跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林鈞仁
Chun-Jen Lin
論文名稱: A Study on the Minimum Area of Rectilinear Polygons Realized by Turn Sequences
指導教授: 何錦文
Chin-Wen Ho
高明達
Ming-Tat Ko
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 49
中文關鍵詞: 直角多邊形頂點角度序列最小面積凸多邊形
外文關鍵詞: rectilinear polygon, turn sequence, minimum area, monotone
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們考慮以其頂點角度之序列,來重建最小面積直角多邊形的問題。我們提出以下兩個結果:
    1. 研究n 點的最小面積直角多邊形的性質,並以此性質將之分為四類,以及算出其中三類多邊形的個數。
    2. 給定一直角凸多邊形之角度序列S,我們提出一計算其最小面積之公式。


    In this thesis, we consider the problem of reconstructing rectilinear polygons with minimum area, from a sequence of angles of vertices.
    We provide two results:

    1. Studying properties of n-vertex rectilinear polygons with minimum area, classifying those polygons into four types by these properties, and computing the number of polygons in each of three of them.

    2. Given a sequence S of angles of a monotone rectilinear polygon, we propose a formula to compute the minimum of area of monotone rectilinear polygons with turn sequence S.

    1 Introduction 1 2 Preliminaries 3 2.1 Formulas to Compute (n) and Δ(n) . . . . . . . . . . . . . . . . . . . . . 3 2.2 Pick's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Canonical Pockets of Rectilinear Polygons . . . . . . . . . . . . . . . . . . 4 2.4 Introduction of Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Realizations of Polygons with Area (n) 6 3.1 The Patterns of Polygons of Type I . . . . . . . . . . . . . . . . . . . . . . 6 3.2 The Patterns of Polygons of Type II.1 . . . . . . . . . . . . . . . . . . . . 9 3.3 The Patterns of Polygons of Type II.2 . . . . . . . . . . . . . . . . . . . . 11 3.4 The Patterns of Polygons of Type II.3 . . . . . . . . . . . . . . . . . . . . 14 4 Minimum Area of Monotone Polygons with a Given Turn Sequence 18 4.1 The Area of P(S) with One Stair and Two Adjacent Stairs . . . . . . . . . 19 4.2 The Area of P(S) with Two Opposite Stairs . . . . . . . . . . . . . . . . . 21 4.3 The Area of P(S) with Three Stairs . . . . . . . . . . . . . . . . . . . . . . 27 4.4 The Area of P(S) with Four Stairs . . . . . . . . . . . . . . . . . . . . . . . 32 5 Conclusion Remarks 40 Reference 41

    [1] Bajuelos, A.L., Tomas, A.P., Marques, F.: Partitioning Orthogonal Polygons by
    Extension of All Edges Incident to Re
    ex Vertices: Lower and Upper Bounds on
    the Number of Pieces. In: Lagana, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan,
    C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3045, pp. 127-136. Springer,
    Heidelberg (2004)
    [2] Biedl, T., Durocher, S., Snoeyink, J.: Reconstructing polygons from scanner data.
    Theoretical Computer Science 412, 4161-4172 (2011)
    [3] Chen, D.Z., Wang, H.: An improved algorithm for reconstructing a simple polygon
    from its visibility angles. Computational Geometry: Theory and Applications 45,
    254-257 (2012)
    [4] Disser, Y., Mihalak, M., Widmayer, P.: Reconstructing a simple polygon from its
    angles. Computational Geometry: Theory and Applications 44, 418-426 (2011)
    [5] O'Rourke, J.: An alternate proof of the rectilinear art gallery theorem. Journal of
    Geometry 21, 118-130 (1983)
    [6] O'Rourke, J.: Uniqueness of orthogonal connect-the-dots. In: Toussaint, G.T. (ed.)
    Computational Morphology, pp. 97-104 (1988)
    [7] Pick, Georg.: \Geometrisches zur Zahlenlehre". Sitzungsberichte des deutschen
    naturwissenschaftlich-medicinischen Vereines fur Bohmen \Lotos" in Prag. (Neue
    Folge) 19: 311-319 (1899)
    [8] Sang Won Bae, Yoshio Okamoto, and Chan-Su Shin: Area bounds of rectilinear
    polygons realized by angle sequences. Proceedings of 23rd International Symposium
    on Algorithms and Computation (ISAAC 2012), Lecture Notes in Computer Science
    7676 (2012)

    QR CODE
    :::