| 研究生: |
朱凱翊 KAI-I CHU |
|---|---|
| 論文名稱: |
單一超導量子位元控制與狀態讀取 Control and Readout of Single Superconducting Qubit |
| 指導教授: |
陳永富
Yung-Fu CHEN |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 電路量子電動力學 、Transmon 量子位元 、一維傳輸線共振器 、色散讀取 、傑恩 斯-卡明斯讀取 、拉比震盪 、狀態掃描 、拉姆齊條紋 、鬆弛時間 、量子退相干時間 |
| 外文關鍵詞: | Circuit quantum electrodynamics, Transmon qubit, one dimensional transmission line resonator, dispersive readout, Jaynes-Cummings readout, Rabi oscillation, state tomography, Ramsey Fringe, relaxation time, decoherence time |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電路量子電動力學 (circuit quantum electrodynamics) 是一個學習光跟原子量子交互作用的平台,同時,也是實現可擴展的量子電腦最有潛力的方法之一。單一Transmon 量子位元耦合一一維傳輸線共振器在我們實驗室裡被製造出來。我們控制並量測量子位元的狀態藉由色散讀取 (dispersive readout) 跟傑恩斯-卡明斯讀取 (Jaynes-Cummings readout)。從頻譜量測結果,確認我們的電路量子電動力學系統是在強耦
合以及強色散區域,此時量子相干性可維持。我們演示數項指標性的時域控制實驗,如拉比震盪 (Rabi oscillation), 狀態掃描 (state tomography) 以及拉姆齊條紋 (RamseyFringe)。基本的量子位元特徵如鬆弛時間 T1,量子退相干時間 T2 以及耦合強度 g 也可確定, 分別是 T1 ∼ 75 ns,T2 ∼ 134 ns,g ∼ 175 MHz。這篇論文提供了超導電路的基本理論背景以控制跟讀取量子位元狀態。
Circuit quantum electrodynamics (cQED) is a platform to study quantum interaction between light and atom. Also, it is one of the most promising ways to achieve scalable quantum computer. A transmon qubit coupled to a one dimensional transmission line resonator is fabricated in our Lab. We control and measure the qubit state by utilizing the dispersive readout and Jaynes-Cummings readout. From spectroscopy measurements, our cQED system is confirmed in the strong dispersive regime where the quantum coherence effect dominates the system. We demonstrate some hallmark time domain control experiments, such as Rabi oscillation, state tomography, and Ramsey Fringe. The basic
characteristic of the qubit, such as relaxation time T1 ∼ 75 ns, decoherence time T2 ∼ 134 ns, and coupling strength g ∼ 175 MHz are then determined. This thesis provides the
basic theoretical backgrounds of superconducting circuits and the studies of control and readout of the single qubit.
[1] S. J. Van Enk, H. J. Kimble, and H. Mabuchi, “Quantum information processing in cavity-
QED,” in Experimental Aspects of Quantum Computing, Springer US, 2005, pp. 75–90,
isbn: 0387230459. doi: 10.1007/0-387-27732-3_6. arXiv: 0510152 [quant-ph].
[2] L. S. Bishop, “Circuit Quantum Electrodynamics,” Jul. 2010. arXiv: 1007.3520. [Online].
Available: http://arxiv.org/abs/1007.3520.
[3] M. Reed, “Entanglement and Quantum Error Correction with Superconducting Qubits,”
Nov. 2013. arXiv: 1311.6759. [Online]. Available: http://arxiv.org/abs/1311.6759.
[4] D. I. Schuster, “Circuit Quantum Electrodynamics,” Tech. Rep., 2007.
[5] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. .-S. Huang, J. Majer, S. Kumar, S. M.
Girvin, and R. J. Schoelkopf, “Circuit Quantum Electrodynamics: Coherent Coupling of
a Single Photon to a Cooper Pair Box,” Nature, vol. 431, no. 7005, pp. 162–167, Jul. 2004.
doi: 10.1038/nature02851. arXiv: 0407325 [cond-mat]. [Online]. Available: http:
//arxiv.org/abs/cond-mat/0407325%20http://dx.doi.org/10.1038/nature02851.
[6] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge insensitive qubit design derived
from the Cooper pair box,” Physical Review A - Atomic, Molecular, and Optical Physics,
vol. 76, no. 4, Feb. 2007. doi: 10.1103/PhysRevA.76.042319. arXiv: 0703002 [cond-
mat]. [Online]. Available: http://arxiv.org/abs/cond-mat/0703002%20http://dx.
doi.org/10.1103/PhysRevA.76.042319.
[7] J. M. Fink, M. Goeppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff,
“Climbing the Jaynes-Cummings Ladder and Observing its Sqrt(n) Nonlinearity in a Cav-
ity QED System,” Nature, vol. 454, no. 7202, pp. 315–318, Feb. 2009. doi: 10.1038/
nature07112. arXiv: 0902.1827. [Online]. Available: http://arxiv.org/abs/0902.
1827%20http://dx.doi.org/10.1038/nature07112.
[8] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J.
Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,”
Physical Review A - Atomic, Molecular, and Optical Physics, vol. 75, no. 3, Dec. 2006.
doi: 10.1103/PhysRevA.75.032329. arXiv: 0612038 [cond-mat]. [Online]. Available:
http://arxiv.org/abs/cond-mat/0612038%20http://dx.doi.org/10.1103/
PhysRevA.75.032329.
[9] X. Gu, A. F. Kockum, A. Miranowicz, Y.-x. Liu, and F. Nori, “Microwave photonics
with superconducting quantum circuits,” Physics Reports, vol. 718-719, pp. 1–102, Jul.
2017. doi: 10.1016/j.physrep.2017.10.002. arXiv: 1707.02046. [Online]. Available:
http://arxiv.org/abs/1707.02046%20http://dx.doi.org/10.1016/j.physrep.
2017.10.002.
[10] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A
Quantum Engineer’s Guide to Superconducting Qubits,” Applied Physics Reviews, vol. 6,
no. 2, Apr. 2019. doi: 10.1063/1.5089550. arXiv: 1904.06560. [Online]. Available:
http://arxiv.org/abs/1904.06560%20http://dx.doi.org/10.1063/1.5089550.
[11] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, S. M. Girvin, and R. J.
Schoelkopf, “Approaching Unit Visibility for Control of a Superconducting Qubit with
Dispersive Readout,” Physical Review Letters, vol. 95, no. 6, Feb. 2005. doi: 10.1103/
PhysRevLett.95.060501. arXiv: 0502645 [cond-mat]. [Online]. Available: http://
arxiv.org/abs/cond-mat/0502645%20http://dx.doi.org/10.1103/PhysRevLett.95.
060501.
[12] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L.
Frunzio, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Resolving photon
number states in a superconducting circuit,” Nature, vol. 445, no. 7127, pp. 515–518, Aug.
2006. doi: 10.1038/nature05461. arXiv: 0608693[cond-mat]. [Online]. Available: http:
//arxiv.org/abs/cond-mat/0608693%20http://dx.doi.org/10.1038/nature05461.
[13] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R. .-S. Huang, J. Majer, S. M. Girvin, and
R. J. Schoelkopf, “AC-Stark Shift and Dephasing of a Superconducting Qubit Strongly
Coupled to a Cavity Field,” Physical Review Letters, vol. 94, no. 12, Aug. 2004. doi:
10.1103/PhysRevLett.94.123602. arXiv: 0408367 [cond-mat]. [Online]. Available:
http://arxiv.org/abs/cond-mat/0408367%20http://dx.doi.org/10.1103/
PhysRevLett.94.123602.
[14] L. S. Bishop, E. Ginossar, and S. M. Girvin, “Response of the Strongly-Driven Jaynes-
Cummings Oscillator,” Physical Review Letters, vol. 105, no. 10, May 2010. doi: 10.1103/
PhysRevLett.105.100505. arXiv: 1005.0377. [Online]. Available: http://arxiv.org/
abs/1005.0377%20http://dx.doi.org/10.1103/PhysRevLett.105.100505.
[15] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J.
Schoelkopf, “High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-
Cummings Nonlinearity,” Physical Review Letters, vol. 105, no. 17, Apr. 2010. doi: 10.
1103/PhysRevLett.105.173601. arXiv: 1004.4323. [Online]. Available: http://arxiv.
org/abs/1004.4323%20http://dx.doi.org/10.1103/PhysRevLett.105.173601.
[16] T. K. Mavrogordatos, G. Tancredi, M. Elliott, M. J. Peterer, A. Patterson, J. Rahamim,
P. J. Leek, E. Ginossar, and M. H. Szymańska, “Simultaneous bistability of qubit and res-
onator in circuit quantum electrodynamics,” Physical Review Letters, vol. 118, no. 4, Nov.
2016. doi: 10.1103/PhysRevLett.118.040402. arXiv: 1611.10354. [Online]. Available:
http://arxiv.org/abs/1611.10354%20http://dx.doi.org/10.1103/PhysRevLett.
118.040402.
[17] M. Boissonneault, J. M. Gambetta, and A. Blais, “Dispersive regime of circuit QED:
photon-dependent qubit dephasing and relaxation rates,” Tech. Rep., 2008. arXiv: 0810.
1336v2.
[18] J. Gambetta, A. Blais, D. I. Schuster, A. Wallraff, L. Frunzio, J. Majer, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, “Qubit-photon interactions in a cavity: Measurement
induced dephasing and number splitting,” Tech. Rep., 2006.
[19] J. M. Chow, L. Dicarlo, J. M. Gambetta, F. Motzoi, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, “Optimized driving of superconducting artificial atoms for improved single-
qubit gates,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 82, no. 4,
p. 040 305, Oct. 2010, issn: 10502947. doi: 10.1103/PhysRevA.82.040305.