跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡宜勳
Yi-Shiun Tsai
論文名稱: 蛋白質與疏水性吸附劑間交互作用之研究: 鹽濃度與疏水性觸手長度之影響
Studies of the Interaction between Protein and Hydrophobic Absorbents : Effects of Salt Concentration and Hydrophobic Ligand Chain Length
指導教授: 周正堂
Cheng-tung Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 104
中文關鍵詞: 恆溫滴定微卡計蛋白質吸附層色分析疏水性交互作用焓變化蛋白質純化
外文關鍵詞: Hydrophobic interaction chromatography
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由平衡鍵結分析(the equilibrium binding analysis)和ITC直接測定吸附火含,探討硫酸銨(ammonium sulfate,(NH ) SO )鹽濃度在肌紅蛋白(myoglobin)對兩種疏水性吸附劑(hydrophobic adsorbents):butyl-和octyl-sepharose上之吸附反應的影響。由結果顯示肌紅蛋白與兩種疏水性吸附劑的吸附親和力,會隨著鹽濃度的增加而變強;再者,由恆溫滴定微卡計(isothermal titration calorimetry,ITC)所測定的結果,顯示,吸附火含的變化量隨鹽濃度的增加而減少,這個發現可被解釋為:隨鹽著濃度的增加去水合熱(dehydration heat)會減少且由於疏水性反應的關係,釋放熱因此增加。此外,隨著鍵結蛋白質的增加,兩種樹脂對肌紅蛋白的吸附火含皆會隨著增大,而且其變化程度在不含(NH ) SO 溶液中比在1.0M (NH ) SO 中顯著,說明了,蛋白質間電性斥力在無鹽的狀態下對於蛋白質吸附量影響是較強的。
    在此,所討論的熱力學參數是有其重要含意的,尤其是吸附焓與吸附火商的相對變化量,不只對蛋白質吸附現象的機制提供更細微的內視,而且對HIC也有更進一步的理論分析。


    The effect of (NH4)2SO4 concentrations on the interaction mechanism between myoglobin and two hydrophobic adsorbents, butyl- and octyl-Sepharose was investigated by the equilibrium binding analysis and by directly measured adsorption enthalpies. The result obtained from the isotherms demonstrated that the affinities of myoglobin adsorption onto the both adsorbents were increased with salt concentrations. Furthermore, the adsorption enthalpies measured by using isothermal titration calorimetry (ITC) were decreased with an increment of salt concentrations, and these findings were explained by the reduction in the dehydration heat and the enhancement of heat released by the hydrophobic interaction as salt concentrations increase.
    Additionally, the adsorption enthalpies of myoglobin with both the resin increased as the amount of bound protein, and the increment in the variation of enthalpy value at solution without (NH4)2SO4 appeared to be steeper than that at 1.0 M (NH4)2SO4. This result implies that the effect of protein-protein electric repulsion on the amount of bound protein is stronger in the absence of the salt in this experiments.
    The thermodynamic parameters presented herein have important implication, particularly the relative variation between the adsorption enthalpies and the adsorption entropies, both for providing further insight into the binding mechanism of protein adsorption and for improving theoretical approaches to HIC.

    封面 中文摘要 英文摘要 目錄 圖目錄 表目錄 第一章 緒論 第二章 文獻回顧 2.1 液相層析法之發展 2.2 離子交換層析(Ion Exchange Chromatography, IEC) 2.3 疏水交互作用層析(Hydrophobic Interaction Chromatography, HIC) 2.4 親和力層析法(Affinity Chromatography, AC) 2.5 以分子大小分離層析法( Size Exclusion Chromatography,SEC ) 2.6 鹽濃度與觸手長度的影響 2.7 熱力學探討 第三章 研究目的 第四章 理論基礎 4.1 疏水性交互作用層析法的吸附機制 4.2 影響吸附機制的因素 4.3 HIC的熱力學探討 4.5 恆溫滴定微卡計 4.6 卡計與Van''t Hoff方程式所得焓值之差別 4.7 本研究立論原理 第五章 儀器設備與藥品 5.1 實驗藥品 5.2 儀器設備 第六章 實驗步驟與分析 6.1 平衡鍵結等溫吸附線的量測 6.2 吸附焓變化的量測 第七章 結果與討論 7.1 平衡鍵結分析 7.2 微卡計測量 第八章 結論 第九章 參考文獻

    1.Xin,Z., Lihua, Z., Xindu, G.,and Wenke, F., “Retention behaviour of proteins under conditions of column overload in hydrophobic interaction chromatography”, Journal of Chromatography A ,729(1996)43-47.
    2.Queiroz,J.A., Tomaz, C.T., and Cabral,J.M.S. “Hydrophobic interaction chromatography of proteins”, J. Biotechnology,87(2001)143-159
    3.El Rassi,Z., “Recent progress in reversed-phase and hydrophobic interaction chromatography of carbohydrate species”,Journal of Chromatography A,720(1996)93-118.
    4.Ruaan, R.-C., Hsu,D., Chen,W.-Y., Chen, H., Lin,M.-S.,
    “Protein separation by hydrophobic interaction chromatography using methacrylic block copolymers as displacers”, J. Chromatography A 824(1998)35-43.
    5.Vailaya,A.,Horvath,Cs., “Retention in hydrophobic interaction chromatography and dissolution of nonpolar gases in water”,Biophysical Chemistry ,62(1996)81-93.
    6.Lin,F.-Y., Chen,C.-S., Chen, W.-Y., and Yamamoto,S., , “Microcalorimetric studies of the interaction mechanisms between proteins and Q-Sepharose at pH near the isoelectric point (pI): Effects of NaCl concentration, pH value, and temperature “, J. Chromatography A, 912(2001)281-289.
    7.Diogo,M.M., Cabral,J.M.S., and Queiroz,J.A., “Preliminary study on hydrophobic interaction chromatography of Chromobacterium viscosum lipase on polypropylene glycol immobilized on Sepharose”,J. Chromatography A, 796(1998)177-180.
    8.Hachem,F., Andrews,B.A., and Asenjo, J. A. “Hydrophobic partitioning of proteins in aqueous two-phase systems Enzyme and Microbial Technology”,19(1996)507-517.
    9.Bockelmann,W., Beuck, H.-P., Lick, S., and Heller, K., “Purification and Characterization of a New Tripeptidase from Lactobacillus delbrueckii ssp. bulgaricus B14”,International Dairy Journal,5(1995)493-502.
    10.Reubsaet,J.,Leon,E., and Jinno,K.,“Characterisation of important interactions controlling retention behaviour of analytes in reversed-phase high-performance liquid chromatography”, Trends in Analytical Chemistry,17(1998)157-166.
    11.Hofstee,B., Methods in Protein Separations, in N.Catsimpoolas (Editor), Plenum Press, New York, 245(1976).
    12. Hofstee, B. H. J., “ Hydrophobic Affinity Chromatography of Proteins ”, Analytical Biochemistry, 52 (1973) 430-448.
    13.Hjerten ,S., Methods in Protein Separations, in N.Catsimpoolas (Editor), Plenum Press, New York, 233(1976).
    14. Gagnon,P., Mayes ,T., and Danielsson, A., “An Adaptation of Hydrophobic Interaction Chromatography for Estimation of Protein Solubility Optima”, J.Pharm.Biomed.Anal. 16(1997)587-582.
    15. Botros,H.G., Rabillon, J., Gregoire, C., David, B., and Dandeu, J.P., “Thiophilic Adsorption Chromatography: Purification of Equ c2 and Equ c3, Two Horse Allergens from Horse sweat”, J.Chromatogr. B. 710, (1998)57-65.
    16. Berna,P.P., , Berna, N., ,Porath,J. and Oscarsson ,S., “Comparison of the Protein Adsorption Selectivity of Salt-promoted Agarose-Based Adsorbents: Hydrophobic, Thiophilic and Electron Donor—Acceptor Adsorbents “,J.Chromatogr. A. 800(1998)151-159.
    17. Diogo, M. M., Cabral, J. M. S., and Queiroz, J. A., “Preliminary Study on Hydrophobic Interaction Chromatography of Chromobacterium Viscosum Lipase on Polypropylene Glycol Immobilized on Sepharose”, J. Chromatogr. A 796 (1998) 177-180.
    18. Schmuch, M.N., Nowlan, M.P., and Gooding, K.M., “Effects of Mobile Phase and Ligand Arm on Protein Retention in Hydrophobic Interaction Chromatography”, J. Chromatogr. 371 (1986) 55-69.
    19. Shepard, C. C. and Tiselius, A., in “Chromatographic Analysis, Discussions of the Faraday Society”, p. 275.
    20. Leffler, J., and Grunwald, E., Rates and Equilibrium of Organic Reactions, Wiley- InterScience, New York, 1963.
    21. Haidacher, D., Vailaya, A., and Horvath, Cs., “Temperature Effects in Hydrophobic Interaction Chromatography”, Proc. Natl. Acad. USA 93 (1996) 2290-2295.
    22. Chen,W.-Y., Wu, C.-F., and Tsao, H.-K., “Microcalorimetric Studies of the Interactions of Lysozyme with Immobilized Cu(II) - Effects of pH Value and Salt Concentration”, J. Colloid Interface Sci. 190 (1997) 49-54.
    23. Lin, F.-Y., Chen, W.-Y., and Sang, L.-C. ,Microcalorimetric Studies of the Interactions of Lysozyme with Immobilized Metal Ions: Effects of ion, pH Value and Salt Concentration. J. Colloid Interface Sci. 214. (1999) 373-379.
    24. Chen, W.-Y., Lin, F.-Y., and Wu, C.-F., “Microcalorimetric Studies of Biomaterials at Interface” in: Kallay, N., (Eds.), Interfacial Dynamics, Marcel Dekker, New York, 1999, p. 419-433.
    25.Lin, F.-Y., Chen, W.-Y., Ruaan, R.-C.,and Huang, H.-M., “Microcalorimetric Studies of Interactions between Proteins and Hydrophobic Ligands in Hydrophobic Interaction Chromatography: Effects of Ligand Chain Length, Density and the Amount of Bound Protein”, J. Chromatogr. A 872 (2000) 37-47.
    26. Perkins, T.W., Mak, D.S., Root, T.W., and Lightfoot, E.N., “Protein Retention in Hydrophobic Interaction Chromatography: Modeling Variation with Buffer Ionic Strength and Column Hydrophobicity”, J. Chromatogr. A 766 (1997) 1-14.
    27. Vailaya, A., and Horvath, Cs., “Retention Thermodynamics in Hydrophobic Interaction Chromatography”, Ind. Eng. Chem. Res. 35 (1996) 2964-2991.
    28. Melander, W., and Horvath, Cs., “Salt Effects on Hydrophobic Interactions in Precipitation and Chromatography of Proteins: an Interpretation of the Lytropic Series”, Arch. Biochem. Biophys. 183 (1977) 200-215.
    29. Melander, W., Corradoni, D., and Horvath, Cs., “Salt-Mediated Retention of Proteins in Hydrophobic-Interaction Chromatography Application of Solvophobic Theory”, J. Chromatogr. 317 (1984) 67-85.
    30. Katti, A., Maa, Y. F., and Horvath, Cs., “Protein Surface Area and Retention in Hydrophobic Interaction Chromatography”, Hromatographia 24 (1987) 646-650.
    31. Hofstee, B. H. J., “ Hydrophobic Affinity Chromatography of Proteins ”, Analytical Biochemistry, 52 (1973) 430-448.
    32. Huang,H.-M., Lin, F.-Y., Chen, W.-Y., and Ruaan,, R.-C., “Isothermal Titration Microcalorimetric Studies of the Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents”, J. Colloid Interface Sci. 229 (2000) 600-606.
    33. Scopes, R. K., “Protein Purification : Principles and Practice”, 2nd ed., Spring-Verlag, New York, 1987.
    34. Smith, R. E., “Ion Cromatography Applications”, 1st ed.,CRC Press,Inc., U.S.A.,1988.
    35. Gjerde, D. T., and Fritz, J. S., “Ion Cromatography”,2nd ed., Hüthig, New York, 1987.
    36. Yost, R. W., Ettre, L. S., and Conlon, R. D., “Practial Liquid Cromatography: an Introduction”, Perkin-Elmer Corp., Norwalk, 1980.
    37. Wu, C.-S., “Handbook of Size Exclusion Cromatography”, Marcel Dekker, Inc., New York, 1995.
    38. Provder, T., “Size Exclusion Cromatography: Methodology and Characterization of Polymers and Related Materials”, American Chemical Society, U.S.A., 1984.
    39. Mohr, P., and Pommerening, K., “Affinity Cromatography: Pratical and Theoretical Aspects”, Marcel Dekker, Inc., New York, 1985.
    40. Braithwaite A. and Smith,F. J., “Chromatographic Methods”, 5thed.,Chapman and Hall, London, chapter 4, 1996.
    41.Lin, F.-Y., and Chen, W.-Y., in “Encyclopedia of Solid Surfaces”(Hubbard, A. T., Eds.), Marcel Dekker, New York, 2001, in press.
    42. Choudhary, G. and Horvath, Cs. ,“Ion-Exchange Chromatography” , Methods in enzymology, 270 (1996) 47-63.
    43. Arakawa ,T., and Timasheff , S. N. ,“ Mechanism of Protein Salting In and Salting Out by Divalent Cation Salts : Balance between Hydration and Salt Binding ”, Biochemistry, 23 (1984) 5912-5923.
    44. Hutchens ,T. W., Yip,T. T., and Porath,J., “Protein Interaction with Immobilized Ligands: Quantitative Analysis of Equilibrium Partition Data and Comparison with Analytical Chromatographic Apprpaches Using Immobilized Metal Affinity Adsorbents”, Analytical Biochemistry, 170 (1988) 168-182.
    45. Hutchens ,T. W., Yip ,T. T., and Porath, J. , “Protein Interaction with Immobilized Ligands: Quantitative Analysis of Equilibrium Partition Data and Comparison with Analytical Chromatographic Apprpaches Using Immobilized Metal Affinity Adsorbents”, Analytical Biochemistry, 170 (1988) 168-182.
    46. Jerker, P., “Immobilized Metal Ion Affinity chromatography”, Protein Expression and Purification, 3 (1992) 263-281.
    47. 林建成,“蛋白質與疏水性基材間交互作用的溫度效應及其吸附機制探討” , 碩士論文 ,國立中央大學,2001.
    48. 林富勇, “固定化金屬離子親和性吸附機制的研究

    QR CODE
    :::