跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳季倫
Chi-Lun Wu
論文名稱: 鑭金屬薄膜應用於氮化鋁鎵/氮化鎵元件之歐姆接觸特性研究
The Role of Lanthanum on Ohmic Contacts to AlGaN/GaN High Electron Mobility Transistors
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 氮化鋁鎵/氮化鎵異質結構歐姆接觸特徵接觸電阻高電子遷移率電晶體二維電子氣
外文關鍵詞: AlGaN/GaN heterostructures, ohmic contacts, specific contact resistance, high electron mobility transistors, two-dimensional electron gas
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋁鎵/氮化鎵高電子遷移率電晶體 (high electron mobility transistors, HEMTs) 由於具有高載子密度與遷移率之二維電子氣 (two-dimensional electron gas, 2DEG),因此極具潛力成為下一代高頻電子及高功率電晶體之主流材料。為了製作出高效率HEMT元件,低特徵接觸電阻 (specific contact resistance, ρc) 與良好熱穩定之歐姆接觸電極是必須達成的技術指標。此外為了與矽基功率元件競爭並降低其製作成本,開發以互補式金氧半導體 (complementary metal-oxide-semiconductor) 標準製程製造AlGaN/GaN HEMTs於矽晶圓上成為近幾年來國學研單位的研究重點。
    本實驗將先探討不同鈦鋁原子比在快速熱退火處理後之電性和表面形態之影響,並研究開發加入鑭 (Lanthanum) 金屬薄膜於歐姆接觸電極中,藉由調控其他金屬層材料厚度,配合適當的退火溫度與氛圍和鑭金屬的使用下,可大幅降低特徵接觸電阻,使鈦/鋁/鑭/銅歐姆接觸可得到低特徵接觸電阻為6.4×10-6 ohm-cm2,與傳統鈦/鋁/鎳/金接觸相比為2.9×10-5 ohm-cm2。表面形態與傳統鈦/鋁/鎳/金、鈦/鋁/鎳/銅和鈦/鋁/銅歐姆接觸金屬比較,得到較為平坦之金屬表面。


    AlGaN/GaN high electron mobility transistors (HEMTs) have been considered as a promising candidate for radio frequency/microwave and power electronics applications because of its high mobility and density of two-dimensional electron gas (2DEG) at the hetero-interface. In order to fabricate high efficiency HEMT devices, ohmic contacts with low specific contact resistance and high thermal stability are necessary. In order to compete with Si-based power devices and lower manufacturing cost, it is desired for AlGaN/GaN HEMTs fabricated on Si wafers with standard CMOS processes. Therefore, Au-free ohmic contacts have recently drawn considerable attention.
    In this experiment, we first investigate the influence of different Ti/Al atomic ratios on specific contact resistance and surface morphology after thermal annealing and develop using Lanthanum thin film in ohmic contact. By optimizing the thickness of other metal layers and annealing temperature and the thickness of Lanthanum, we can obtain a low specific contact resistance of 6.4×10-6 ohm-cm2 by using Ti/Al/La/Cu ohmic contacts comparing to 2.9×10-5 ohm-cm2 by using Ti/Al/Ni/Au ohmic contacts. The surface morphology is compared with traditional Ti/Al/Ni/Au, Ti/Al/Ni/Cu and Ti/Al/Cu ohmic contacts, we can acquire a much smoother surface.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1前言 1 1.2 研究背景 4 第二章 基礎理論及文獻回顧 5 2.1 金屬半導體接觸理論 5 2.1.1 整流接觸 (Rectified contact) 6 2.1.2 非整流接觸 (Non-rectified contact) 8 2.2 傳輸線模型原理 10 2.3 n型氮化鎵 (n-type GaN) 之發展 16 2.4 氮化鋁鎵/氮化鎵異質結構 (AlGaN/GaN heterostructures) 的歐姆接觸發展 23 2.4.1 氮化鋁鎵/氮化鎵高電子遷移率電晶體之歐姆接觸金屬種類 (Category of ohmic contact metals on AlGaN/GaN HEMTs) 23 2.4.2 凹槽式氮化鋁鎵/氮化鎵高電子遷移率電晶體 (Recessed AlGaN/GaN HEMTs) 37 第三章 研究方法與步驟 40 特徵接觸電阻量測與測試結構製備 40 實驗流程 40 氮化鋁鎵/氮化鎵高電子遷移率電晶體晶片結構 41 利用微影製程與電子束蒸鍍製作CTLM電極量測結構 41 特性分析 44 第四章 結果與討論 45 4.1 快速熱退火處理對Ti/Al雙層接觸結構之影響 45 4.1.1 鈦鋁原子比對Ti/Al接觸結構表面形態之影響 45 4.1.2 鈦鋁原子比對Ti/Al接觸結構特徵接觸電阻之影響 49 4.2 快速熱退火處理對Ti/Al/Cu接觸結構之影響 50 4.3 快速熱退火處理對Ti/Al/La/Cu接觸結構之影響 55 4.3.1 鑭金屬厚度對特徵接觸電阻之影響 55 4.3.2 Ti/Al/La/Cu接觸在快速熱退火處理後表面形態之影響 56 4.3.3 Ti/Al/La/Cu接觸在快速熱退火處理後特徵接觸電阻之影響 58 第五章 結論 60 參考文獻 61

    [1] M. Kuzuhara, Jpn. J. Appl. Phys. 55, 070101 (2016).
    [2] S. Nakamura, Appl. Phys. Lett. 72, 2014 (1998).
    [3] B. Poti, Electronics Lett. 39, 1747 (2003).
    [4] X. Sun, Sci. Rep. 5, 16819 (2015).
    [5] K. Shinohara, IEEE Electron Device Lett. 39, 417 (2018).
    [6] U. K. Mishra, IEEE, 96, 287 (2008).
    [7] Power GaN 2017: Epitaxy, Devices, Applications, and Technology Trend (2017).
    [8] F. Sacconi, IEEE Transactions on Electron Devices. 48, 450 (2001).
    [9] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd Edition, 1988.
    [10] J. Bardeen, Phys. Rev. 71,717(1947).
    [11] H. Murrmann, IEEE Trans. Electron Dev. ED-16, 1022 (1969).
    [12] H.H. Berger, J. Electrochem. Soc. 119, 507 (1972).
    [13] Dieter K. Schroder, Semiconductor material and device characterization, IEEE Press John wiley & sons (2006).
    [14] W. Shockley, Rep. No. AFAL-TDR-64-207, Air Force Avionics Lab (1964).
    [15] J. H. Klootwijk, Proc. IEEE 2004 Int. Conference on Microelectronic Test Structure. 17, 247 (2004).
    [16] D. R. Lide, CRC Handbook of Chemistry and Physics. pp. 12 (1996).
    [17] J. S. Foresi, Appl. Phys. Lett. 62, 2859 (1993).
    [18] Y. F.Wu, Solid-State Electron. 41, 165 (1997).
    [19] Q. Z. Liu, S. S. Lau, Solid-State Electron. 42, 677 (1998).
    [20] Y. Kribes, Semicond. Sci. Technol. 12 1500 (1997).
    [21] C. J. Lu, J. Appl. Phys. 94. 245 (2003).
    [22] M. E. Lin, Appl. Phys. Lett. 64, 1003 (1994).
    [23] R. France, Appl. Phys. Lett. 90, 062115 (2007).
    [24] S. Pookpanratana, Appl. Phys. Lett. 93, 172106 (2008).
    [25] K. Tone, H. Tokuda and M. Kuzuhara, Proceedings IEE (2013).
    [26] Y. Liu, M. K. Bera and L. M. Kyaw, World Academy of Science, Engineering and Technology 6, 530 (2012).
    [27] C. M. Pelto, J. Appl. Phys. 92, 4283 (2002).
    [28] M. Placidi, Appl. Surf. Sci. 255, 6057 (2009).
    [29] N. Thierry-Jebali, Materials Science Forum. 778, 1185 (2014).
    [30] E. F. Chor, J. Appl. Phys. 90, 1242 (2001).
    [31] H. Kim, Appl. Phys. Lett. 93, 192106 (2008).
    [32] M. A. Borysiewicz, Solid-State Electronics. 94, 15 (2014)
    [33] S. N. Mohammad, J. Appl. Phys. 95, 7940 (2004).
    [34] M. W. Fay, J. Appl. Phys. 96, 5588 (2004).
    [35] T. K. Zywietz, Appl. Phys., Lett. 74, 1695 (1999).
    [36] A. Motayed, J. Appl. Phys. 93, 1087 (2003).
    [37] F.M. Mohammed, J. Appl. Phys. 100, 023708 (2006).
    [38] V. Rajagopal Reddy, Semicond. Sci. Technol. 19, 975 (2004).
    [39] F. Iucolano, J. Appl. Phys. 100, 123706 (2006).
    [40] C. Lu, J. Appl. Phys. 91, 9218 (2002).
    [41] L. Wang, J. Appl. Phys. 98, 106105 (2005).
    [42] H. Kim, Appl. Phys. Lett. 93, 192106 (2008).
    [43] Z. Fan, Appl. Phys. Lett. 68, 1672 (1996).
    [44] S. Ruvimov, Appl. Phys. Lett. 69, 1556 (1996).
    [45] B. Van Daele, Appl. Phys. Lett. 87, 061905 (2005).
    [46] B. P. Luther, Appl. Phys. Lett. 70, 57 (1997).
    [47] J. W. Jeon, Appl. Phys. Lett. 94, 042102 (2009).
    [48] J. S. Kwak, Appl. Phys. Lett. 80, 3554 (2002).
    [49] A. Fontserè, Microelectronic Engineering 88, 3140 (2011).
    [50] G. Greco, Appl. Surf. Sci. 383, 324 (2016).
    [51] T. V. Blank, Tech. Phys. Lett. 30, 806 (2004).
    [52] T. V. Blank, Semiconductors 41, 1263 (2007).
    [53] V. N. Bessolov, Semiconductors 42, 1315 (2008).
    [54] A.V. Sachenko, J.Appl.Phys. 111, 083701 (2012).
    [55] A.V. Sachenko, Phys. St. Sol. C 10, 498 (2013).
    [56] V. Sachenko, A.E. Belyaev, Semiconductors 48, 1308 (2014).
    [57] A. Motayed, K. A. Jones, M. A. Derenge, J. Appl. Phys. 95, 1516 (2004).
    [58] T. K. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 74, 1695 (1999).
    [59] A. Motayed, M. Jah, A. Sharma, W. T. Aderson, J. Vac. Sci. Technol. B 22, 663 (2004).
    [60] D. Selvanathan, L. Zhou, V. Kumar, and I. Adesida, Phys. Stat. Sol. (a) 194, 583 (2002).
    [61] H. S. Kim, Y. H. Lee, G. Y. Yeom, Materials Science and Engineering B50 82, (1997).
    [62] H. S. Lee, D. S. Lee, T. Palacios, IEEE Electron Device Lett. 32, 623 (2011).
    [63] A. Firrincieli, B. De Jaeger, S. You, Jpn. J. Appl. Phys. 53, 04EF01 (2014).
    [64] H. C. Seo, P. Chapman, H. I. Cho, J. H. Lee, Appl. Phys. Lett., 93, 102102 (2008).
    [65] A.C. Schmitz, A.T. Ping, M .A. Khan, Semicond. Sci. Technol. 11, 1464 (1996).
    [66] Q. Z. Liu, L. S. Yu, F. Deng, Appl. Phys. Lett. 71, 1658 (1997).
    [67] D. Qiao, Z. F. Guan, J. Carlton, Appl. Phys. Lett. 74, 2652(1999).
    [68] K. H. Kim, C. M. Jeon, S. H. Oh, J. Vac. Sci. Technol. B, 23 (2005).
    [69] D. Selvanathan, F. M. Mohammed. A. Tesfayesus, J. Vac. Sci. Technol. B 22, 2409 (2004).
    [70] A. Crespo, R. Fitch, J. Gillespie, in Proceedings of the 2003 International Conference on Compound Semiconductor Mfg. Technology, Technical Digest 13.1 (2003).
    [71] C. M. Pelto, Y. A. Chang, Y. Chen, Sol. St. Electr. 45, 1597 (2001).
    [72] F. Roccaforte, F. Iucolano, A. Alberti, Superlatt. Microstruc. 40, 373 (2006).
    [73] F. Roccaforte, F. Iucolano, F. Giannazzo, Appl. Phys. Lett. 89, 022103 (2006).
    [74] B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, J. Cryst. Growth 241, 15 (2002).
    [75] X. Kong, K. Wei, G. Liu and X. Liu, J. Phys. D: Appl. Phys. 45, 265101 (2012).
    [76] M. W. Fay, G. Moldovan, P.D. Brown, J. Appl. Phys. 92, 94 (2002).
    [77] V. Desmaris, J.Y. Shiu, C.Y. Lu, J. Appl. Phys. 100, 034904 (2006).
    [78] F. Iucolano, G.Greco, F. Roccaforte, Appl. Phys. Lett. 103, 201604 (2013).
    [79] L. Wang, D. H. Kim, and I. Adesida, Appl. Phys. Lett. 95, 172107 (2009).
    [80] J. Bardeen, J. Appl. Phys. 11, 88 (1940).
    [81] A. Fontsere, A. Perez-Tomas, M. Placidi, Appl. Phys. Lett. 99, 213504 (2011).
    [82] A. N. Bright, P. J. Thomas, M. Weyland, J. Appl. Phys. 89, 3143 (2001).
    [83] L. Wang, F. M. Mohammed, and I. Adesida, J. Appl. Phys. 103, 093516 (2008).
    [84] L. Wang, F. M. Mohammed, and I. Adesida, J. Appl. Phys. 101, 013702 (2007).
    [85] L. Wang, F. M. Mohammed, and I. Adesida, Appl. Phys. Lett. 87, 141915 (2005).
    [86] G. Fisichella, G. Greco, F. Roccaforte, Appl. Phys. Lett. 105, 063117 (2014)
    [87] G. Greco, F. Iucolano, C. Bongiorno, Applied Surface Science 314, 546 (2014).
    [88] G. Greco, F. Iucolano, C. Bongiorno, Phys. Stat. Soli. A, 1–8 (2015).
    [89] A. Constant, J. Baele, P. Coppens, J. Appl. Phys. 120, 104502 (2016).
    [90] Y. L. Lan, H. C. Lin, H. H. Liu, Appl. Phys. Lett. 94, 243502 (2009)
    [91] R. C. Fitch, J. K. Gillespie, N. Moser, Appl. Phys. Lett. 84, 1495 (2004)
    [92] M. W. Fay, G. Moldovan, N.J. Weston, J. Appl. Phys. 96, 5588 (2004).
    [93] Y. Y. Wong, Y. K. Chen, J. S. Maa, Appl. Phys. Lett. 103, 152104 (2013)
    [94] D. N. Slapovskiy, A. Yu. Pavlov, V. Yu. Pavlov, Semiconductors 51, 438 (2017).
    [95] G. Vanko, T. Lalinsky, Z. Mozolova, Vacuum 82, 193 (2008)
    [96] B. P. Luther, J. M. Delucca, S. E. Mohney, Appl. Phys. Lett. 71, 3859 (1997).
    [97] B. Zhang, W. Lin, S. Li, Y. Zheng, J. Appl. Phys. 111, 113710 (2012).
    [98] N. A. Papanicolaou, A. Edwards, M. V. Rao, J. Appl. Phys. 87, 380 (2000).
    [99] J. P. Ao, D. Kikuta, N. Kubota, IEEE Electron Device Lett. 24, 500 (2003).
    [100] H. F. Sun, A. R. Alt, and C. R. Bolognesi, IEEE Electron Device Lett. 28, 350 (2007).
    [101] Y. C. Lin, T. Y. Kuo, Y. L. Chuang, Appl. Phys. Express 5, 066503 (2012).
    [102] C. J. Hang, C. Q. Wang, M. Mayer, Microelectron. Reliab. 48, 416 (2008).
    [103] M. Schuette and W. Lu, J. Electron. Mater. 36, 420 (2007).
    [104] W. Macherzynski, A. Stafiniak, B. Paszkiewicz, Phys. Stat. Soli. A 213, 1145 (2016).
    [105] S. Heikman, S. Keller, Y. Wu, J. Appl. Phys. 93, 10114 (2003).
    [106] A. Nakajima, P. Liu, M. Ogura, J. Appl. Phys. 115, 153707 (2014).
    [107] M. Elsayed, R. Krause-Rehberg, O. Moutanabbir, B. Korff, W. Anwand, S Richter and C Hagendorf, New J. Appl. Phys. 13, 013029 (2011).

    QR CODE
    :::