| 研究生: |
李彥瑾 Yan-Jin Li |
|---|---|
| 論文名稱: |
液相沉積NixFe1-xOy在氧化鐵光陽極應用在太陽能產氫 Solution-phase deposition of NixFe1-xOy on hematite photoanode as electocatalyst for application to solar-hydrogen production |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 光電化學產氫 、雷射脈衝沉積法 、氧化鐵 、催化劑 |
| 外文關鍵詞: | Solar hydrogen production, Pulsed laser deposition, Hematite, Electrocatalyst |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能產氫是有效產氫方式之一。太陽能水分解的理想材料應具有以下性質:適當的能帶邊緣位置,帶隙小,良好的電子和空穴傳輸特性,以及高的化學穩定性。對於赤礦鐵材料載子擴散距離短、導帶位置低於氫還原電位限制了該材料在光電化學催化技術中的發展應用。因此,本研究利用脈衝雷射濺鍍沉積(Pulsed-laser deposition method, PLD)製備氧化鐵奈米薄膜於FTO導電玻璃上成長氧化鐵奈米陣列薄膜,解決氧化鐵載子擴散距離短問題,提升光電流密度;液相沉積(Solution-phase deposition, SPD),在氧化鐵上沉積一層催化劑,改善表面能階位置不合適問題,降低起始電位。
本研究中,我們成功以脈衝雷射濺鍍沉積製備氧化鐵奈米薄膜,並在薄膜表面以液相沉積的方式沉積NixFe1-xOy作為Fe2O3/SnO2光陽極上的電催化劑。這方法允許我們可控制NixFe1-xOy催化劑覆蓋層的組成和厚度。其中以前驅物鎳鐵含量比為8:2製成之電極在光電流密度電性測試中性質最佳,起始電位為0.85 V (vs. RHE),在1.4 V (vs. RHE)測得的光電流密度值為0.55 mA/cm2。
Solar hydrogen production is one of the promising methods for hydrogen generation. In photoelectrochemical method, hydrogen is generated by using a water-splitting device composed of a photoanode and a photocathode immersed in electrolyte (KOH, H2SO4, etc). To achieve this goal efficiently, the material of photoelectrodes should have properties of appropriate band edges, small bandgap, great electron (hole) conductivity, high chemical stability and high natural abundance. Hematite has great properties of appropriate bandgap and high chemical stability, but short carrier diffusion distances and conduction band below water reduction level limit its performance. Therefore, we proposed a strategy including optimization of carrier density in hematite photoanode and modification of surface state position using pulsed laser deposition (PLD) and solution-phase deposition (SPD). The optimal samples showed the onset potential of 0.85 V (vs. RHE) and current density of 0.55 mA/cm2 at 1.4 V (vs. RHE).
[1] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1972.
[2] D. K. Bora, A. Braun and E. C. Constable, ““In rust we trust”. Hematite – the prospective inorganic backbone for artificial photosynthesis”, Energy &Environmental Science, Vol. 6, pp. 407-425, 2013.
[3] J. Luo, J.Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N-G Park, S. D. Tilley, H. J. Fan and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts” Science, Vol. 345, pp. 1593-1596, 2014.
[4] M. Grätzel (Eds.), Photoelectrochemical Hydrogen Production, Springer Science+ Business Media, New York, 2012.
[5] 劉傳璽、陳進來編著,半導體元件物理與製程理論與實務,五南書局,台灣,2014。
[6] J. A. Glasscock, “Nanostructured materials for photoelectrochemical hydrogen production using sunlight”, PhD thesis, School of Chemical Sciences and Engineering, University of New South Wales, 2008.
[7] N. Sato (Eds.), Electrochemistry at Metal and Semiconductor Electrodes, Elsevier, 1998.
[8] M. F. Weber and M. J. Dignam, “Splitting water with semiconducting photoelectrodes efficiency considerations”, International Journal of Hydrogen Energy, Vol. 11, pp. 225–232, 1986.
[9] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, J. A. Glasscock, “Efficiency of solar water splitting using semiconductor electrodes”, International Journal of Hydrogen Energy, Vol. 31, pp. 1999–2017, 2006.
[10] J. R. Bolton, S. J. Strickler, J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water”, Nature, Vol. 316, pp. 495–500, 1985.
[11] H. Gerischer, “Electrochemical behavior of semiconductors under illumination”, Journal of The Electrochemical Society, Vol. 113, pp. 1174-1182, 1966.
[12] M. F. Weber and M. J. Dignam, “Efficiency of splitting water with semiconducting photoelectrodes”, Journal of The Electrochemical Society, Vol. 131, pp. 1258–1265, 1984.
[13] S. Licht, B. Wang, and S. Mukerji, T. Soga, M. Umeno and H. Tributsch, “Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis” Journal of Physical Chemistry B, Vol. 104, pp. 8920–8924, 2000.
[14] W.J. Youngblood, S.H.A. Lee, Y. Kobayashi, E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust and T.E. Mallouk, “Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell”, Jouranl of the American Chemical Society, Vol. 131, pp. 926-927, 2009.
[15] M.W. Kanan and D.G. Nocera, “In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+”, Science, Vol. 321, pp. 1072–1075, 2008.
[16] T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, “Photoelectrochemical hydrogen generation from water using solar energy”, International Journal of Hydrogen Energy, Vol. 27(10), pp. 991-1022, 2002.
[17] R. V. D. Krol, Y. Liang and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides”, Journal of Materials Chemistry, Vol. 18, pp. 2311-2320, 2008.
[18] K. R. Lee, Y. P. Hsu, X. J. K. Chang, S. W. Lee and C. J. Tseng, “Effects of spin speed on the photoelectrochemical properties of Fe2O3”, International Journal of Electrochemical Science, Vol. 9, pp. 7680-7692, 2014.
[19] Y. P. Hsu, S. W. Lee, J. K. Chang, C. J. Tseng, K. R. Lee and C. H. Wang, “Effects of platinum doping on the photoelectrochemical properties of Fe2O3 electrodes”, International Journal of Electrochemical Science, Vol. 8, pp. 11615-11623, 2013.
[20] C. J. Tseng, C. H. Wang and K. W. Cheng, “Photoelectrochemical Performance of Gallium-doped AgInS2 Film Electrodes”, Solar Energy Materials and Solar Cells, Vol. 36, pp. 33-42, 2012.
[21] C. H. Wang, K. W. Cheng and C. J. Tseng, “Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition”, Solar Energy Materials and Solar Cells, Vol. 95, pp. 453-461, 2011.
[22] K. L. Hardee and A.J. Bard, “Semiconductor electrodes 5. Application of chemically vapor deposited iron-oxide films to photosensitized electrolysis”, Journal of The Electrochemical Society, Vol. 123, pp. 1024-1026, 1976.
[23] A. A. Akl, “Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis”, Applied Surface Science, Vol. 233, pp. 307-319, 2004.
[24] C.-Y. Chang, C.-H. Wang, C.-J. Tseng, K.W. Cheng, L.W. Hourng, B.T. Tsai, "Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production," Int. J. Hydrogen Energy, Vol. 37, pp. 13616-13622, 2012.
[25] M. Momirlan and T. N. Veziroglu, “Current status of hydrogen energy”, Renewable Sustainable Energy, Vol. 6, pp. 141-179, 2002.
[26] M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett and P. R. Trevellick, “Electrochemistry and photoelectrochemistry of iron(III) oxide”, Journal of the Chemical Society, Faraday Transactions, Vol. 79, pp. 2027-2041,1983.
[27] R.K. Quinn, R.D. Nasby and R.J. Baughman, “Photoassisted electrolysis of water using single crystal alpha-Fe2O3 anodes”, Materials Research Bulletin, Vol. 11, pp. 1011-1017, 1976.
[28] K. Itoh and J.O. Bockris, “Stacked thin-film photoelectrode using iron-oxide”, Journal of Applied Physics, Vol. 56, pp. 874, 1984.
[29] K. Itoh and J.O. Bockris, “Thin-film photoelectrochemistry – iron-oxide”, Journal Electrochemical Society, Vol. 131, 1266-1271, 1984.
[30] G. Horowitz, “Capacitance voltage measurements and flat-band potential determination on Zr-doped alpha-Fe2O3 single-crystal electrodes”, Journal of Electroanalytical Chemistry, Vol. 159, pp. 421-436, 1983.
[31] C. Sanchez, K.D. Sieber and G.A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3”, Journal of Electroanalytical Chemistry, Vol. 252, pp. 269-290, 1988.
[32] M. J. Katz, S. C. Riha, N. C. Jeong, A. B. F. Martinson, O. K. Farha and J. T. Hupp, “Toward solar fuels: Water splitting with sunlight and “rusrt”?”, Coordination Chemistry Reviews, Vol. 256, pp. 2521-2529, 2012.
[33] R. Liu, Z. Zheng, J. Spurgeon and X. Yang, “Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers”, Energy & Environmental Science, Vol. 7, pp. 2504-2517, 2014.
[34] C. Du, X. Yang, M. T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping and D. Wang, “Hematite-Based Water Splitting with Low Turn-On Voltages”, Angewandte Chemie International, Vol. 52, pp. 12692-12695, 2013.
[35] C. G. M. Guio, M. T. Mayer, A. Yella, S. D. Tilly, M. Grätzel and X. Hu, “An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting”, Journal of The American Chemical Society, Vol. 137, pp. 9927-9936, 2015.
[36] R. Eason (Eds.), Pulsed laser deposition of thin films, John Wiley & Sons, Inc., Canada, 2007.
[37] R. Brahimi, B Bellal, Y. Bessekhouad, A. Bouguelia and M. Trari, “Physical properties of CuAlO2 single crystal”, Journal of Crystal Growth, Vol. 310, pp. 4325-4329, 2008.