| 研究生: |
劉隆運 Long-yun Liou |
|---|---|
| 論文名稱: |
低放射性廢棄物最終處置場回填材料之配方與工程特性研究 The Engineering Character of Backfill Material for Low-Level Radwaste Disposal Site |
| 指導教授: |
黃偉慶
Wei-hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 低放廢棄物 、回填材料 、水力傳導度 、回脹潛能 |
| 外文關鍵詞: | low-level radioactive waste, backfill material, hydraulic conductivity, swelling potential |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將以台東樟原村日興土與美國懷俄明州BH膨潤土,混合台東地區硬頁岩碎石級配料,調配成不同體積比例之膨潤土-碎石配方之低放廢棄物最終處置場回填材料,而後進行基本材料性質、改良式夯實、自由回脹應變、定體積回脹壓力、水力傳導度等試驗,依據試驗結果歸納其功能特性,一方面尋求回填材料之最佳配方,另一方面掌握本土回填材料之工程性質,並與國際間使用之回填材料加以比較。
研究結果顯示,若以日興土或BH膨潤土加入碎石混合製成回填材料,可兼具低水力傳導度、適當回脹量及良好工作度與夯實特性等功能。二種膨潤土相較,BH膨潤土由於塑性較高,所製成回填材料之水力傳導度較日興土回填材為低,回脹潛能遠較日興土回填材高。膨潤土體積比例變化為影響回填材料之工程性質的主要因素,體積比例愈高則其水力傳導度愈低而回脹潛能愈高。於選擇低放廢棄物處置場之回填材料配方時,物理性質的考量應以低水力傳導度、不超額回脹壓力、及高均勻性而不易析離等為主要為考慮因素。
Zhishin clay and black hill bentonite were used as candidate clay materials for backfills of low-level radwaste disposal site. Various amounts of the clay were mixed with crushed Argillite obtained from Taitung to prepare for backfill material mixtures. These mixtures were tested for material characteristics, compaction properties, free swelling, swelling pressure, and hydraulic conductivity to assess their potential as backfill materials, with emphasis on their long-term stability for radwaste containment. Based on the evaluations, formulation of the backfill material is developed. Also, the properties of the backfill material are compared with those used by other countries to assure suitability.
The results indicate : (1) black hill bentonite that the plastic index is higher than Zhishin clay, so the hydraulic conductivity of black hill backfill material is lower than Zhishin backfill material, and the swelling properties of black hill bentonite is higher than Zhishin clay. (2) the bentonite volume ratio is higher, the hydraulic conductivity getting lower and the swelling properties getting higher.
The physical properties of the considerations should be based on the low hydraulic conductivity not the excess swelling pressure, when choosing low-level waste disposal sites formulations of backfill materials.
田永銘、李德河,(1994),「黏土質材料的吸水回脹速率」,中國土木水利工程學刊,第六卷,第二期,第223-232頁。
台灣電力公司,(2008)低放射性廢棄物最終處置設施,概念設計(A版)。
台灣電力公司,(2007)低放射性廢棄物最終處置計畫書(修定版)。
台灣電力公司,(2004)低放射性廢棄物最終處置計畫書。
沈茂松,(1988)實用土壤力學實驗,增訂第七版,文笙書局。
柯甫松,(1997)「放射性廢料處置場回填材料之工程性質」,碩士論文,國立中央大大學土木工程研究所,中壢。
陳志霖,(2000),「放射性廢料處置場緩衝材料之力學性質」,國立中央大學土木工程系碩士論文,中壢。
陳文泉,(2004)「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
鄒惠如,(2005)「最終處置場黏土障壁材料之傳輸行為研究」,碩士論文,國立中央大學土木工程研究所,中壢。
趙杏媛、張有瑜,(1990),黏土礦物與黏土礦物分析,海洋出版社,北京。
緒方信英、小峯秀雄、申島均、長沢達朗、石井卓,(1994)「所定の透氷係数を有するべントナイト混合土の配合設定方法」,粘土科學,第34卷,第2号,第95-101頁(in Japan)。
施國欽,(2005),大地工程學(一)土壤力學篇,第五版,文笙書局。
劉東山,蔡昭明,(1993),放射性廢料管理,曉園出版社,台北。
劉慧玲,(2001)「台東樟原黏土資源之有機黏土備置研究」,碩士論文,國立成功大學資源工程學系,臺南。
鄭文龍、吳偉康,(1994)「紅土礫石材料之夯實特性及施工控制」,土木水利,第二十一卷,第一期,第17-30頁。
Ahn,H. S. and Jo, H. Y. (2009). “Influence of exchangeable cations on hydraulic conductivity of compacted bentonite.” Applied Clay Science, 44, 144-150.
Ashayeri, I. and Yasrebi, S. (2009). “Free-Swell and Swelling Pressure of Unsaturated Compacted Clays; Experiments and Neural Networks Modeling.” Geotechnical and Geological Engineering, 27(1), 137-153.
Arnold, B. W., Knowlton R. G., Schelling F. J., Mattie P. D., Cochran, J. C. and JowH. N. (2007). “Taiwan industrial cooperation program transfer for low-level radioactive waste final disposal-phase I ” SAND2007-0131, Sandia National Laboratories, Albuquerque, New Mexico.
Borgesson, L., Johannesson, L. E. and Gunnarsson, D.(2003), “Influence of Soil Structure Heterogeneities on the Behaviour of Backfill Materials Based on Mixtures of Bentonite and Crushed Rock”, Applied Clay Science 23: 121-131.
Benson, C. H., Zhai, H., and Wang, X. (1994). ”Estimating Hydraulic Conductivity of Compacted Clay Liners,” Journal of Geotechnical Engineering, ASCE, 120, 366-387.
Boynton, S. S., and Daniel, D. E., (1985) “Hydraulic Conductivity Test on Compacted Clay.” Journal of Geotechnical Engineering, ASCE, 111, 465-477.
Chung, R. M. and Yokel, F. Y. (1982). “Reference Laboratory Testing for Backfill.” Scientific Basis for Nuclear Waste Management, 379-387.
Dixon,D.A., Gray,M.N., and Thomas.A.W. (1984). “A Study of the Compaction Properties of Potential Clay-Sand Buffer Mixtures for Use in Nuclear Fuel Waste Disposal.” Engineering Geology, 21, 247-255.
Engelhardt, I. and Finsterle, S. (2003). “Thermal-Hydraulic Experiments with Bentonite/Cruched Rock Mixtures and Estimation of Effective parameters by Inverse Modeling.” Applied Clay Science, 23, 111-120.
Holopainen, P. (1985). “Crushed Aggregate-Bentonite Mixtures as Backfill Material for Repositories of Low-and Intermediate Level Radioactive.” Engineering Geology, 21, 239-245.
Han, K., Heinonen, W. J. and Bonne A. (1997), “Radioactive Waste Disposal:Global Experience and Challenges,” IAEA Bulletin, 39, 33-41.
Haverkamp, B. and E. Biurrun (2005) : Safety Assessment and justification of the proposed solution for closure. DBE TECHNOLOGY Report DBE-RCH-TSK-07.
ISRM,(1981). Rock Characterization, Testing and Monitoring, ISRM suggested methods. ed. E.T. Brown.publ. Pergamon Press, Oxford, pp. 211
Komine, H. (2004). “Simplified Evaluation for Swelling Characteristics of Bentonites.” Engineering Geology, 71, 3-4.
Komine, H. (2004).“Simplified Evaluation on Hydraulic Conductivities of Sand-Bentonite Mixture Backfill.”Applied Clay Science, 26, 1-4, 13-19.
Lee, O. J., Cho, W. J. and Chun K. S. (1999). “Swelling Pressures of a Potential Buffer Material for High-Level Waste Repository.” Journal of Korean Nuclear Society, 31(2), 139-150.
Lambe, T. W., (1958) “The Engineering Behavior of Compacted Clay.” Journal of the Soil Mechanics and Foundations Division., ASCE, 84, 1654, 1-35
Mishra, A. K., Dhawan, S., and Rao, S. M. (2008). “Analysis of Swelling and Shrinkage Behavior of Compacted Clays.” Geotechnical and Geological Engineering, 26(3), 289-298.
Moon, S., Nam, K., Kim, J. Y., Hwan, S. K., Chung, M. (2008). “Effectiveness of Compacted Soil Liner as a Gas Barrier Layer in the Landfill Final Cover System.” Waste Management, 28(10), 1909-1914.
Mitchell, J.K. (1993) Fundamentals of Soil Behavior. 2nd Edition. John Wiley & Sons Inc., NY.
Naser A. Al-Shayea., (2001) “The Combined Effect of Clay and Moisture Content on the Behavior of Remolded Unsaturated Soils. ” Engineering Geology, 62(4), 319-342.
Onoue, A., Horie,Y., Ishii,T., Ogata, N. and Komine, H. (1993) “Consolidation and Swelling Properties of Bentonite-Sand Mixture for Sealing Low-Level Radioactive Waste Repositories. ” Trans, 12th Ind. Conf.on SMIRT, Session N03/2,351-356.
Ogata, N. and Komine, H. (1993) “Permeability Changes of Bentonite-Sand Mixture Before and After Swelling. ” Trans, 12th Ind. Conf.on SMIRT, Session N03/3, 357-362.
Pusch, R., (2001).The Buffer and Backfill Handbook Part 2: Materials and Techniques, SKB TR-02-12.
Pusch, R., (1994): Waste Disposal in Rock, Developments in Geotechnical Engineering, 76. Elsevier Publ. Co.
Sivapullaiah, P.V., Sridharan, A., and Stalin, V.K. (1996). “Swelling Behaviour of Soil-Bentonite Mixtures.” Canadian Geotechnical Journal, 33, 808-814.
Shelley, T. L., and Daniel, D. E., (1993) “Effect of Gravel on Hydraulic Conductivity of Compacted Soil Liners.” Journal of Geotechnical Engineering, ASCE, 119, 54-68.
Seed, H. B., Woodware, R. J., and Lundgren, R., (1962) “Prediction of Swelling Potential for Compacted Clays.” Journal of the Soil Mechanics and Foundation Engineering , ASCE, 88, 53-87.
Taylor, R.K. and Cripps, J.C., (1987), “Weathering Effects: Slopes in Mudrocks and Over-Consolidated Clay.” Chapter 13, Edited by Anderson M.G. and Richard K.S., John Wiley & Sons.
Yong R. N., and Benno, P. W. (1975). Soil Properties and Behavior Elsevier, NewYork.