跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張奕盛
Yi-Sheng Chang
論文名稱: 聚合商針對小型發電業者的 門檻式合約設計與誘因機制
Threshold-Based Contract and Incentive Mechanism Designed by Aggregators when Facing Small-Scale Power Generators
指導教授: 曾富祥
Fu-Shiang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 84
中文關鍵詞: 綠色電力聚合商投資誘因門檻導向合約設計心理誘因感知雙層隨機決策模型
外文關鍵詞: Green electricity, Aggregator, Investment incentive, Threshold-based contract design, Psychological incentive perception, Bi-level stochastic decision model
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著淨零排放與企業永續的國際趨勢加劇,綠色電力需求快速升高。然而,台灣綠電市場目前仍高度仰賴分散的小型發電業者(Power Generators, PG),使得企業用戶(Enterprises, EP)難以穩定採購。為解決此問題,聚合商(Aggregators, AG)成為關鍵中介角色,透過契約設計整合多個PG,並將綠電提供給企業。本研究建立一套單期雙層隨機決策模型,以台灣北部與南部兩位具區域異質性的PG為對象,探討AG如何透過包含門檻分位(α)、基本購價("w" )與誘因強度(κ)的門檻導向合約,引導PG進行最佳投資決策。模型亦納入PG的心理誘因感知(β)、空間限制("A" ^*)、保留利潤與FiT外部選項等真實參與條件。
    模擬結果顯示,AG利潤與PG投資行為具顯著非線性門檻效應,契約參數稍有調整即可能觸發PG行為跳躍。其中,門檻過高將導致誘因折損,反而抑制投資;而適度提升基本購價可激勵供應,但若超出區間則將提高AG成本。敏感度分析進一步指出,外部收購價的提升將壓縮AG誘因空間,而投資成本上升與空間限制惡化將直接衝擊PG參與動機。上述結果顯示契約績效對心理與政策參數高度敏感。
    本研究提出的門檻式合約設計,能有效誘導小型發電業者投資綠能,並協助聚合商在不確定環境下整合分散電源。後續研究可延伸為多期規劃、內生化 AG 投資決策,並納入多家具異質偏好的企業用戶,以貼近真實綠電供應鏈之制度挑戰。

    關鍵字:綠色電力、聚合商、投資誘因、門檻導向合約設計、心理誘因感知、
    雙層隨機決策模型


    With the increasing global momentum toward net-zero carbon goals and corporate sustainability, the demand for green electricity has risen sharply. In Taiwan, the green power supply remains heavily reliant on decentralized small-scale power generators (PGs), posing challenges for enterprises (EPs) to secure reliable procurement. Aggregators (AGs) have emerged as key intermediaries by consolidating PGs and delivering electricity through tailored contracts. This study develops a single-period bi-level stochastic decision model to examine how AGs can induce optimal PG investments under uncertainty by offering threshold-based contracts defined by a quantile threshold (α), baseline purchase price (α), and incentive intensity (κ). The model incorporates critical real-world constraints such as psychological perception of incentives (β), spatial limitations ("A" ^*), reservation profit, and alternative income from Feed-in Tariff ("FiT" ).
    Simulations reveal nonlinear threshold effects, where small changes in contract terms can trigger sharp shifts in PG investment. High thresholds reduce participation due to psychological discounting of bonuses, while moderate increases in baseline prices can encourage investment, but excessive increases raise AG costs. Sensitivity analysis shows that higher external purchase prices levels compress AG's incentive space, while rising investment costs and spatial constraints diminish PG willingness to participate. These results underscore the model's sensitivity to behavioral and policy parameters.
    The proposed contract mechanism encourages PG investment in green generation and supports AGs in coordinating decentralized supply under uncertainty. Future research may extend this model to multi-period settings, endogenous AG investment decisions, and multiple heterogeneous EPs to reflect the complexity of real-world green electricity systems.
    Keywords: Green electricity, Aggregator, Investment incentive, Threshold-based contract design, Psychological incentive perception, Bi-level stochastic decision model

    中文摘要 i Abstract ii Acknowledgements iii Table of Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Objectives 2 1.3 Research Framework 3 Chapter 2 Literature Review 5 2.1 Aggregators and Renewable Energy Trading Mechanisms 5 2.2 Supply and Demand Uncertainty in Renewable Power 7 2.3 Contract Design and Incentive Structures 9 2.4 Investment Decisions and Risk Control 12 2.5 Behavioral Factors in Participation and Bonus Perception 13 2.6 Regulatory and Institutional Influences on Aggregator Contracting 16 Chapter 3 Contract Design Framework 18 3.1 Model Environment and Assumptions 18 3.2 Threshold-Based Contract Structure 21 3.3 Profit Functions and Contract Optimization 24 3.3.1 PG Investment Decision and Participation Condition 24 3.3.2 AG Profit Function and Contract Optimization 27 Chapter 4 Numerical Analysis 31 4.1 Model Setup, Assumptions, and Grid Search Procedure 31 4.2 Numerical Results under Fixed Parameters 33 4.3 Comparative Analysis of Contract Decision Configurations 37 4.3.1 Impact of Threshold Quantile (α) 37 4.3.2 Impact of Incentive Intensity (κ) 40 4.3.3 Impact of Base Purchase Price ("w" ) 41 4.4 Overall Findings from Numerical Analysis 42 Chapter 5 Sensitivity Analysis 44 5.1 Sensitivity Analysis of Feed-in Tariff ("FiT" ) 44 5.2 Sensitivity Analysis of unit price of electricity ("p" ) 46 5.3 Sensitivity Analysis of Generation Cost ("c" ) 48 5.4 Sensitivity Analysis of Psychological Compensation Parameter (θ) 49 5.5 Sensitivity Analysis of Bonus Perception Parameter (β) 51 5.6 Sensitivity Analysis of Capacity Penalty Coefficient ("h" ) 52 5.7 Extension: Impact of Investment-Dependent Generation Variability 54 Chapter 6 Conclusion and Future Research 57 6.1 Conclusion 57 6.2 Future Research 63 References 66 Appendix 71

    〔1〕Adil, A. M., & Ko, Y. (2016). Socio-technical evolution of decentralized energy systems: A critical review and implications for urban planning and policy. Renewable and Sustainable Energy Reviews, 57, 1025–1037. https://doi.org/10.1016/j.rser.2015.12.079
    〔2〕Aghajani, G., & Ghadimi, N. (2018). Multi-objective energy management in a micro-grid. Energy Reports, 4, 218–225. https://doi.org/10.1016/j.egyr.2017.10.002
    〔3〕Aranda, C., Arellano, J., & Davila, A. (2019). Subjective bonuses and target setting in budget-based incentive contracts. Management Accounting Research, 44, 1–14. https://doi.org/10.1016/j.mar.2018.07.003
    〔4〕Burger, S., Chaves-Ávila, J. P., Batlle, C., & Pérez-Arriaga, I. J. (2017). A review of the value of aggregators in electricity systems. Renewable and Sustainable Energy Reviews, 77, 395–405. https://doi.org/10.1016/j.rser.2017.04.014
    〔5〕Cachon, G. P. (2003). Supply chain coordination with contracts. In S. C. Graves & A. G. de Kok (Eds.), Handbooks in operations research and management science: Supply chain management (Vol. 11, pp. 227–339). Elsevier. https://doi.org/10.1016/S0927-0507(03)11006-7
    〔6〕Campaigne, C., & Oren, S. S. (2016). Firming renewable power with demand response: an end-to-end aggregator business model. Journal of Regulatory Economics, 50(1), 1–37. https://doi.org/10.1007/s11149-016-9301-y
    〔7〕Conejo, A. J., Morales, J. M., & Baringo, L. (2010). Real-time demand response model. IEEE Transactions on Smart Grid, 1(3), 236–242. https://doi.org/10.1109/TSG.2010.2078843
    〔8〕Dou, G., & Choi, T.-M. (2024). Compete or cooperate? Effects of channel relationships on government policies for sustainability. European Journal of Operational Research, 313(2), 718–732. https://doi.org/10.1016/j.ejor.2023.08.012
    〔9〕Gabriel, S. A., Conejo, A. J., Plazas, M. A., & Balakrishnan, S. (2006). Optimal price and quantity determination for retail electric power contracts. IEEE Transactions on Power Systems, 21(1), 180–187. https://doi.org/10.1109/TPWRS.2005.860920
    〔10〕Gilbert, F., Anjos, M. F., Marcotte, P., & Savard, G. (2015). Optimal design of bilateral contracts for energy procurement. European Journal of Operational Research, 246(2), 641–650. https://doi.org/10.1016/j.ejor.2015.04.050
    〔11〕Goel, L., Wu, Q., & Wang, P. (2006, June). Reliability enhancement of a deregulated power system considering demand response. In 2006 IEEE Power Engineering Society General Meeting (pp. 1–6). IEEE. https://doi.org/10.1109/PES.2006.1708965
    〔12〕Iria, J., & Soares, F. (2019). Real-time provision of multiple electricity market products by an aggregator of prosumers. Applied Energy, 255, 113792. https://doi.org/10.1016/j.apenergy.2019.113792
    〔13〕Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–292. https://doi.org/10.2307/1914185
    〔14〕Kerscher, S., & Arboleya, P. (2022). The key role of aggregators in the energy transition under the latest European regulatory framework. International Journal of Electrical Power & Energy Systems, 134, 107361. https://doi.org/10.1016/j.ijepes.2021.107361
    〔15〕Kim, D., & Choi, D. G. (2023). The aggregator’s contract design problem in the electricity demand response market. Operations Research International Journal, 23(8), Article 8. https://doi.org/10.1007/s12351-023-00753-1
    〔16〕Liu, Z., Anderson, T. D., & Cruz, J. M. (2012). Consumer environmental awareness and competition in two-stage supply chains. European Journal of Operational Research, 218(3), 602–613. https://doi.org/10.1016/j.ejor.2011.11.027
    〔17〕Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., & Weinhardt, C. (2018). A blockchain-based smart grid: Towards sustainable local energy markets. Computer Science – Research and Development, 33(1–2), 207–214. https://doi.org/10.1007/s00450-017-0360-9
    〔18〕Moura, R., & Brito, M. C. (2019). Prosumer aggregation policies, country experience and business models. Energy Policy, 132, 820–830. https://doi.org/10.1016/j.enpol.2019.06.053
    〔19〕Okur, Ö., Voulis, N., Heijnen, P., & Lukszo, Z. (2019). Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation. Applied Energy, 247, 426–437. https://doi.org/10.1016/j.apenergy.2019.04.035
    〔20〕Oliveira, F. S., Ruiz, C., & Conejo, A. J. (2013). Contract design and supply chain coordination in the electricity industry. European Journal of Operational Research, 227(3), 527–537. https://doi.org/10.1016/j.ejor.2013.01.003
    〔21〕Padhi, S. S., Mukherjee, S., & Cheng, T. C. E. (2024). Optimal investment decision for industry 4.0 under uncertainties of capability and competence building for managing supply chain risks. International Journal of Production Economics, 267, 109067. https://doi.org/10.1016/j.ijpe.2023.109067
    〔22〕Parag, Y., & Sovacool, B. K. (2016). Electricity market design for the prosumer era. Nature Energy, 1(4), 16032. https://doi.org/10.1038/nenergy.2016.32
    〔23〕Peng, H., & Pang, T. (2019). Optimal strategies for a three-level contract-farming supply chain with subsidy. International Journal of Production Economics, 216, 274–286. https://doi.org/10.1016/j.ijpe.2019.06.011

    QR CODE
    :::