跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許琇茹
HSIU-JU,HSU
論文名稱: 利用碳氣凝膠紙電容吸附處理水中銨離子之研究
The removal of ammonium ion via the capacitive deionization using the carbon aerogel electrodes
指導教授: 秦靜如
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 碳氣凝膠紙、電容去離子、電容吸附、銨離子
外文關鍵詞: carbon aerogel, CDI, capacitance adsorption
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢污水之氨氮主要來自工業生產與生活污水,其對生態具有多方面的危害,包括耗用水中溶氧、產生臭味、與造成水體優氧化等,因此考量其對環境與生物健康有一定程度之危害,許多國家皆設立法令控制其排放許可濃度,且越來越嚴苛。本研究使用碳氣凝膠紙為電極,利用電容去離子機制去除銨離子。於研究中,使用循環伏安法來分析碳氣凝膠電極之電化學特性,結果顯示電容量最高約為38 F/g,當提升掃速時比電容量會下降,但電容圖形維持相似的形狀。在電容吸附批次系統中,當初始銨離子濃度為40 ppm且外加電壓從1.0 V上升至1.6 V時,銨離子的去除量從0.15 mg/g上升到1.85 mg/g;而銨離子濃度由10 ppm提高至40 ppm且外加電壓1.1 V或1.6 V時,提升濃度可使去除量增加,但1.1 V時會因吸附飽和量有限而使去除量無法持續提升。並在電容吸附研究中,發現硝酸根離子與亞硝酸根離子的產生,推測具有氧化還原反應發生。電極穩定性與再生性結果,以循環伏安法連續掃描電極三百次,其圖形不隨掃描次數改變,而電容吸附實驗反覆充放電三次的情形下,導電度具有相同的下降與上升趨勢,且下降的幅度維持一致。


    Ammonium in wastewater are harmful to the environment for it is odorous, would consume oxygen and cause eutrophication. Therefore, the regulations on the ammonium have become stricter. This study focused on the removal of ammonium via the capacitive deionization using carbon aerogel electrodes. The electrochemical characteristics of carbon aerogel electrode were investigated vie cyclic voltammetry experiment. The results showed that the highest specific capacitance of carbon aerogel electrode is about 38 F/g. Removal of ammonium vie capacitive deionization were studied. The results showed that the removal amount of ammonium ion increases from 0.15 mg/g to 1.85 mg/g when the applied voltage increased from 1.0 V to 1.6 V with the initial ammonium ion concentration of 40 ppm. In the meantime, trace amount of nitrate and nitrite have been found, which may be due to the oxidation of ammonium ion. The stability of the electrode was established by repeating the cyclic voltammetry measurements at scan rate of 100 mV/s for 300 cycles, which showed 100 % retention. The carbon aerogel electrodes were regenerated in charge/discharge cycle, the conductivity profile suggested that the removal of ammonium ions was repeatedly for up to three cycles.

    目錄 摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XI 第一章 前言 1 1-1研究緣起 1 1-2 研究內容與目的 2 1-3 研究流程 3 第二章 文獻回顧 4 2-1 電容去離子技術 4 2-1-1 電容器 5 2-1-2 電雙層理論(electric double layer, EDL) 6 2-1-3 特定吸附 7 2-1-4電雙層重疊 9 2-2 電容去離子技術之發展與應用 10 2-2-1 多孔洞碳電極 11 2-2-2 電容去離子之影響因素 14 2-2-3 電容去離子技術現況 17 2-3 水中之氨氮 20 2-3-1 基本特性 20 2-3-2 氨氮之危害 20 2-3-3 氨氮處理技術 21 2-3-4 管制現況 24 第三章 實驗方法 25 3-1實驗藥品與設備 25 3-1-1實驗藥品 25 3-1-2 實驗設備 26 3-2實驗方法 29 3-2-1 碳氣凝膠特性分析 29 3-2-2 電極電容特性分析 30 3-2-3 電容吸附實驗 32 3-2-4 水質分析 34 3-2-5 去除量、脫附量計算 34 第四章 結果與討論 36 4-1 電極表面特性分析 36 4-1-1表面結構分析 37 4-1-2比表面積與孔徑分佈 38 4-2 電容特性分析 40 4-2-1 掃描速率之影響 40 4-2-2 電解質濃度之影響 43 4-3 電容吸附現象 47 4-3-1 非電容吸附與電容吸附 47 4-3-2 電壓對去除氨氮之影響 52 4-3-3 初始濃度對去除氨氮之影響 62 4-3-4 綜合評估 66 4-4 含氮物質之宿命 67 4-4-1 硝酸根離子與亞硝酸根離子之量測 67 4-4-2 含氮物質反應推估 72 4-5 電極之穩定性與再生 76 4-5-1 電極之穩定性 76 4-5-2 電極之再生性 78 第五章 結論與建議 79 5-1 結論 79 5-2 建議 81 附錄 82 參考文獻 83 圖目錄 Fig. 1-1 研究流程圖 3 Fig. 2-1 電容去離子示意圖 4 Fig. 2-2 Stern電雙層模型示意圖 8 Fig. 2-3 電雙層重疊示意圖 9 Fig. 2-4 多孔性碳材結構示意圖 13 Fig. 3-1 循環伏安法之電位控制圖 30 Fig. 3-2 理想電容之循環伏安圖 31 Fig. 3-3 三極式電解槽 32 Fig. 3-4 實驗系統架構 33 Fig. 3-5 採樣時間點示意圖 34 Fig. 4-1 碳氣凝膠氮氣吸脫附等溫線 38 Fig. 4-2 碳氣凝膠平均孔徑分布圖 39 Fig. 4-3 各掃描速率之碳氣凝膠電極循環伏安比電容圖。 42 Fig. 4-4各電解質濃度對碳氣凝膠電極之循環伏安比電容圖之影響 46 Fig. 4-5 DI水空白實驗之導電度變化 47 Fig. 4-6 非電容吸附之導電度變化情形 49 Fig. 4-7 初始濃度對非電容吸附量之影響 49 Fig. 4- 8 銨離子濃度與導電度隨時間之變化 51 Fig. 4-9 各電壓對溶液導電度之變化情形 53 Fig. 4- 10 電容吸附實驗之再現性 56 Fig. 4- 11 電容吸附實驗之導電度變化。 57 Fig. 4-12 電壓對銨離子去除量之影響 58 Fig. 4-13 施加電壓為1.1 V時銨離子之濃度變化 60 Fig. 4-14 電壓對銨離子脫附之影響 61 Fig. 4-15 初始濃度對去除量之影響 64 Fig. 4-16 初始濃度對去除效率之影響 65 Fig. 4-17 各施加電壓對溶液中硝酸根離子濃度之影響 69 Fig. 4-18 碳氣凝膠紙之FT-IR圖譜 70 Fig. 4-19 不同電壓之pH值變化 74 Fig. 4-20 碳氣凝膠紙之SEM圖 75 Fig. 4-21 重複掃描碳氣凝膠電極之CV圖變化 77 Fig. 4-22 連續充放電之導電度變化 78 表目錄 Table. 3-1 實驗藥品 25 Table. 4-1 碳氣凝膠表面積與孔徑特性 39 Table. 4-2 各掃描速率之碳氣凝膠電極循環伏安比電容值 42 Table. 4-3電容吸附前後碳氣凝膠紙元素分析結果 71 Table. 4-4 水中銨離子可能發生之反應 74

    AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I. and Hilal, N., "Application of capacitive deionisation in water desalination: a review", Desalination, 342, 3-15 (2014).

    An, H., Wang, Y., Wang, X., Zheng, L., Wang, X., Yi, L., Bai, L. and Zhang, X., "Polypyrrole/carbon aerogel composite materials for supercapacitor", Journal of Power Sources, 195, 6964-6969 (2010).

    Bard, A. J., Faulkner, L. R., ''Electrochemical Methods: Fundamentals and Applications'', Wiley, New York (1980)

    Biener, J., Stadermann, M., Suss, M., Worsley, M. A., Biener, M. M., Rose, K. A. and Baumann, T. F., "Advanced carbon aerogels for energy applications", Energy & Environmental Science, 4, 656 (2011).

    Biesheuvel, P. M., Zhao, R., Porada, S. and van der Wal, A., "Theory of membrane capacitive deionization including the effect of the electrode pore space", Journal of colloid and interface science, 360, 239-248 (2011).

    Blair, J. W. and Murphy, G. W., "Electrochemical demineralization of water with porous electrodes of large surface area.", American Chemical Society, 27, 206–223 (1960).

    Cai, P. F., Su, C. J., Chang, W. T., Chang, F. C., Peng, C. Y., Sun, I. W., Wei, Y. L., Jou, C. J. and Wang, H. P., "Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene", Marine pollution bulletin, 85, 733-737 (2014).

    Caudle, D. D., Tucker, J. H., Cooper, J. L., Arnold, B. B., Papastamataki, A., ''Electrochemical demineralization of water with carbon electrodes'', Oklahoma University Research Institute (1996)

    Farmer, J. C., Bahowick, S. M., Harrar, J. E., Fix, D. V., Martinelli, R. E., Vu, A. K. and Carroll, K. L., "Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water", Energy and Fuels, 11, 337-347 (1997).

    Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W. and Poco, J. F., "Capacitive deionization of NaCI and NaNO3 solutions with carbon aerogel electrodes", Journal of The Electrochemical Society, 143, 159-169 (1996).

    Frackowiak, E. and Beguin, F., "Carbon materials for the electrochemical storage of energy in capacitors", Carbon, 39, 937-950 (2001).

    Gabelich, C. J., Tran, T. D. and Suffet, I. H. M., "Electrosorption of inorganic salts from aqueous solution using carbon aerogels", Environmental Science and Technology, 36, 3010–3019 (2002).

    Hou, C. H. and Huang, C. Y., "A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization", Desalination, 314, 124-129 (2013).

    Huang, W., Zhang, Y., Bao, S. and Song, S., "Desalination by capacitive deionization with carbon-based materials as electrode: a review", Surface Review and Letters, 20, 1330003-1 - 1330003-10 (2013).

    Hwang, S. W. and Hyun, S. H., "Capacitance control of carbon aerogel electrodes", Journal of Non-Crystalline Solids, 347, 238-245 (2004).

    Johnson, A. M. and Newman, J., "Desalting by Means of Porous Carbon Electrodes", The Electrochemical Society, 118, 510-517 (1971).

    Jung, H. H., Hwang, S. W., Hyun, S. H., Lee, K. H. and Kim, G. T., "Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying", Desalination, 216, 377-385 (2007).

    Kim, K. W., Kim, Y. J., Kim, I. T., Park, G. I. and Lee, E. H., "The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode", Electrochimica Acta, 50, 4356-4364 (2005).
    Landon, J., Gao, X., Kulengowski, B., Neathery, J. K. and Liu, K., "Impact of pore size characteristics on the electrosorption capacity of carbon xerogel electrodes for capacitive deionization", Journal of the Electrochemical Society, 159, A1861-A1866 (2012).

    Lee, J. H., Bae, W. S. and Choi, J. H., "Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process", Desalination, 258, 159-163 (2010).

    Li, G. R., Feng, Z. P., Ou, Y. N., Wu, D., Fu, R. and Tong, Y. X., "Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors", Langmuir 26, 2209-2213 (2010).

    Li, L., Zou, L., Song, H. and Morris, G., "Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride", Carbon, 47, 775-781 (2009).

    Lim, S. J. and Kim, T. H., "Removal of organic matter and nitrogen in swine wastewater using an integrated ion exchange and bioelectrochemical system", Bioresource Technology, 189, 107-112 (2015).

    Lima, R. M. G., da Silva Wildhagen, G. R., da Cunha, J. W. S. D. and Afonso, J. C., "Removal of ammonium ion from produced waters in petroleum offshore exploitation by a batch single-stage electrolytic process", Journal of Hazardous Materals, 161, 1560-1564 (2009).

    Lin, C., Ritter, J. A. and Popov, B. N., "Correlation of Double-Layer Capacitance with the Pore Structure of Sol-Gel Derived Carbon Xerogels", Journal of The Electrochemical Society, 146, 3639-3643 (1999).

    Mona, M. B., Bertrand, S. and Peña, O., "Synthesis and characterization of Zn1−xNixFe2O4 spinels prepared by a citrate precursor", Journal of Solid State Chemistry, 178, 1080-1086 (2005).

    Mossad, M. and Zou, L., "Evaluation of the salt removal efficiency of capacitive deionisation: Kinetics, isotherms and thermodynamics", Chemical Engineering Journal, 223, 704-713 (2013).
    Mossad, M. and Zou, L., "A study of the capacitive deionisation performance under various operational conditions", Journal of hazardous materials, 213-214, 491-497 (2012).

    Murphy, G. W. and Caudle, D. D., "Mathematical theory of electrochemical demineralization in flowing systems", Electrochimica Acta, 12, 1655-1664 (1967).

    Oren, Y., "Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)", Desalination, 228, 10-29 (2008).

    Rasines, G., Lavela, P., Macías, C., Haro, M., Ania, C. O. and Tirado, J. L., "Electrochemical response of carbon aerogel electrodes in saline water", Journal of Electroanalytical Chemistry, 671, 92-98 (2012).

    Salitra, G., Soffer, A., Eliad, L., Cohen, Y. and Aurbach, D., "Carbon electrodes for double-layer capacitors I. relations between ion and pore dimensions", Journal of The Electrochemical Society, 147, 2486-2493 (2000).

    Seo, S. J., Jeon, H., Lee, J. K., Kim, G. Y., Park, D., Nojima, H., Lee, J. and Moon, S. H., "Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications", Water research, 44, 2267-2275 (2010).

    Shi, H., "Activated carbons and double layer capacitance", Electrochimica Acta, 41, 1633–1639 (1996).

    Simon, P. and Gogotsi, Y., "Capacitive energy storage in nanostructured carbon–electrolyte systems", Accounts of chemical research, 46, 1094–1103 (2011).

    Tang, W., Kovalsky, P., He, D. and Waite, T. D., "Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization", Water research, 84, 342-349 (2015).

    Thurston, R. V., Russo, R. C. and Vinogradov, G. A., "Ammonia toxicity to fishes. effect of pH on the toxicity of the unionized ammonia species", Environmental Science Technology, 15, 837-840. (1981).

    Tuan, T. N., Chung, S., Lee, J. K. and Lee, J., "Improvement of water softening efficiency in capacitive deionization by ultra purification process of reduced graphene oxide", Current Applied Physics, 15, 1397-1401 (2015).

    Wang, J., Angnes, L., Tobias, H., Roesner, R. A., Hong, K. C., Glass, R. S., Kong, F. M. and Pekala, R. W., "Carbon aerogel composite electrodes", Analytical Chemistry, 65, 2300–2303 (1993).

    Wang, Y., Zhang, L., Wu, Y., Xu, S. and Wang, J., "Polypyrrole/carbon nanotube composites as cathode material for performance enhancing of capacitive deionization technology", Desalination, 354, 62-67 (2014).

    Xu, P., Drewes, J. E., Heil, D. and Wang, G., "Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology", Water research, 42, 2605-2617 (2008).

    Xu, X., Pan, L., Liu, Y., Lu, T. and Sun, Z., "Enhanced capacitive deionization performance of graphene by nitrogen doping", Journal of colloid and interface science, 445, 143-150 (2015).

    Yang, K. L., Ying, T. Y., Yiacoumi, S., Tsouris, C. and Vittoratos, E. S., "Electrosorption of ions from aqueous solutions by carbon aerogel: an electrical double-layer model", Langmuir, 17, 1961-1969 (2001).

    Zhan, G., Zhang, L., Li, D., Su, W., Tao, Y. and Qian, J., "Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell", Bioresource technology, 116, 271-277 (2012).

    Zhang, L. L. and Zhao, X. S., "Carbon-based materials as supercapacitor electrodes", Chemical Society Reviews, 38, 2520-2531 (2009).

    王凱平,「奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究」,碩士論文,國立成功大學化學工程學系,台南,2005

    古明祥,「金屬添加物對碳系超級電容器特性之影響」,碩士論文,大同大學材料工程研究所,台北,2007

    李岳青,「利用碳氣凝膠紙對硝酸進行電容去離子之研究」,碩士論文,國立中央大學,桃園,2015

    林家驊,「添加Cu/La/Ce觸媒於濕式氧化程序處理含氨水溶液之研究」,碩士論文,國立中山大學環境工程研究所,高雄,2002

    林志高,「新穎厭氧氨氧化技術發展及應用」,國立交通大學環境工程研究所,新竹,2011

    陳琪婷,「以二氧化錳催化降解水中氨氮之研究」,碩士論文,國立中山大學海洋環境及工程學系,高雄,2003

    曾思嘉,「以電容去離子技術移除水中砷之機制研究」,中華民國環境工程學會2015廢水處理技術研討會,2015

    黃承業,「以電容去離子技術去除無機鹽類之電吸附行為研究」,碩士論文,東海大學環境科學與工程學系,台中,2012

    黃仁宗、錢中明,「電吸附技術運用於廢水回收再利用:除鹽與COD」,中華民國環境工程學會2010廢水處理技術研討會,2010

    黃詩晴,「製備多壁奈米碳管/幾丁聚醣複合式電極以電吸附方式移除苯胺之研究」,碩士論文,東海大學環境工程研究所,台中,2014

    熊楚強,「電化學」,新文京開發出版股份有限公司,2004

    劉曉萍,「利用簡單合成方法所得氨氮化鈦的濾膜做為超級電容器的應用上」,碩士論文,國立清華大學材料科學與工程學系,新竹,2012

    鄭喬薇,「碳氣凝膠電容吸附水中重金屬」,碩士論文,國立中央大學環境工程所,中壢,2007

    謝明宏,「二氧化鈦修飾中孔洞分子篩之合成、結構特性與光催化反應」,碩士論文,國立中央大學化學學系,桃園,2009

    環保署,「事業廢水水質特性分析及污染管制措施研議計畫」,2013

    環保署,「產業廢水污染調查及管制措施研議計畫」,2010

    QR CODE
    :::