跳到主要內容

簡易檢索 / 詳目顯示

研究生: 姜新彥
Hsin-Yen Chiang
論文名稱: PQ-PMMA 體積布拉格光柵於雙光束干涉記錄下繞射光譜隨時間演變之研究
Study of Time-Dependent Evolution of the Diffraction Spectrum in PQ-PMMA Volume Bragg Gratings Recorded by Two-Beam Interference
指導教授: 鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 80
中文關鍵詞: PQ-PMMA體積布拉格光柵
外文關鍵詞: PQ-PMMA, Volume Bragg Gratings
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討以雙光束干涉法記錄於 PQ-PMMA 感光材料中的體積布拉格光柵(Volume Bragg Grating, VBG),其繞射光譜在記錄後隨時間演變的行為。為達成此目的,本研究結合了數值模擬與實驗驗證。首先,基於耦合波理論與傳遞矩陣法,建立了一套數值模擬系統,用以分析折射率調變、平均折射率、光柵週期與材料厚度等結構參數,對繞射效率、光譜半高全寬(FWHM)及布拉格波長等光譜參數的影響。
    實驗部分,透過雙光束干涉法在 2 mm 與 5 mm 厚的 PQ-PMMA 樣品中寫入光柵,並系統性地量測在不同曝光條件下,繞射光譜隨時間的演變。研究結果顯示,熱效應是造成光譜不穩定的關鍵因素。曝光後材料的非均勻冷卻收縮以及光熱效應,會導致光譜出現飄移、變寬甚至分裂成多個波峰的現象。其中,布拉格波長的飄移方向取決於熱光效應 (𝑑𝑛/𝑑𝑇) 所造成的折射率上升與光柵週期 (Λ) 收縮之間的競爭結果。實驗發現,在入射光強度為 2.45×10³ W/m²、曝光 195 秒的條件下,對應到布拉格波長為 844.91 nm 的光柵結構,可獲得最高的繞射效率。
    本研究成功透過一個結合熱效應與折射率變化的模型,對觀測到的光譜演變趨勢提出合理解釋,為優化 VBG 元件的穩定性提供了重要依據。


    This study investigates the time-dependent evolution of the diffraction spectrum in Volume Bragg Gratings (VBGs) recorded in PQ-PMMA photosensitive material via two beam interference. To this end, the research combines numerical simulation with experimental verification. A numerical simulation system was first developed based on coupled wave theory and the transfer matrix method to analyze how structural parameters—such as refractive index modulation, average refractive index, grating period, and material thickness—influence spectral parameters like diffraction efficiency, full width at half maximum (FWHM), and the Bragg wavelength.
    Experimentally, gratings were written into 2 mm and 5 mm thick PQ-PMMA samples using the two-beam interference method, and the temporal evolution of the diffraction spectrum was systematically measured under various exposure conditions. The results indicate that thermal effects are a key factor causing spectral instability. Non-uniform cooling shrinkage and thermo-optic effects in the material post-exposure lead to spectral shifts, broadening, and even splitting into multiple peaks. The direction of the Bragg wavelength shift is determined by the competition between the refractive index increase caused by the thermo-optic effect and the shrinkage of the grating period (Λ). It was experimentally found that under an incident intensity of 2.45×10³ W/m² and an exposure time of 195 seconds, the highest diffraction efficiency was achieved for a grating structure corresponding to a Bragg wavelength of 844.91 nm.
    This research successfully explains the observed trends in spectral evolution through a model that combines thermal effects and refractive index variations, thereby providing an important basis for optimizing the stability of VBG components.

    中文摘要...................................................I ABSTRACT..................................................II 致謝.....................................................III 目錄......................................................IV 圖目錄....................................................VI 表目錄....................................................IX 符號說明...................................................X 第一章 緒論................................................1 1-1前言...................................................1 1-2研究動機...............................................1 第二章 背景知識.............................................3 2-1 體積布拉格光柵(VBG, Volume Bragg Grating)..............3 2-1-1 基本原理........................................3 2-1-2 耦合波理論(Coupled Wave Theory) ................4 2-2 傳遞矩陣法(Transfer Matrix Method) ...................7 2-3 雙光束干涉法(Two beam interference) ...................9 2-4 熱效應(Thermal effects) .............................11 2-4-1 彈簧模型(Spring Model) ........................11 2-4-2 熱膨脹(Thermal expansion) .....................13 2-4-3 熱光效應(Thermo-optic effects) ...............13 2-5 光柵記錄參數的計算與設定 ..............................14 第三章 PQ-PMMA 感光高分子材料 .............................18 3-1 相關原始材料分子 .....................................18 3-2 聚合反應 ............................................18 3-2-1 起始反應(Initiation)...........................18 3-2-2 鏈增長反應(Propagation) .......................19 3-2-3 鏈終止反應(Termination) .......................19 3-3 光化學反應 ..........................................20 3-4 材料製備 ............................................22 3-5 反應速率式 ..........................................23 第四章 數值模擬 ...........................................26 4-1 繞射光譜參數的變化分析 ................................26 4-1-1 折射率對繞射光譜參數的影響 ......................26 4-1-2 每層週期結構厚度對繞射光譜的影響 ................28 4-2 熱膨脹對布拉格波長(𝜦_𝑩)的影響 ........................30 4-3 材料層厚度與折射率對繞射光譜的影響 .....................30 4-4 樣品溫度變化模擬 .....................................33 第五章 實驗架設與數據分析 ..................................35 5-1 實驗架設與流程 .......................................35 5-1-1 實驗架設 ......................................35 5-1-2 實驗流程 ......................................36 5-2 光譜隨時間變化之實驗觀察與分析 ........................40 5-2-1 實驗參數設定 ...................................40 5-2-2 繞射效率、FWHM 及布拉格波長(𝝀_𝑩)隨時間變化 ......41 5-2-3 實驗結果與模擬結果圖比較 ........................47 5-3 不同曝光條件的繞射效率、FWHM 及布拉格波長(𝝀_𝑩) ........49 5-4 曝光完照射藍光對光譜的影響 ............................53 5-5 不同 𝜦_𝑩 之最終波長偏移與 ∆n 比較 ....................54 第六章 結論 ..............................................58 第七章 未來展望 ...........................................59 參考文獻 .................................................60

    [1] A. V. Veniaminov, and Y. N. Sedunov, “Diffusion of phenanthrenequinone in poly(methyl methacrylate): Holographic measurements,” Vysokomolekulyarnye Soedineniya Seriya a & Seriya B, vol. 38, no. 1, pp. 71-76, Jan, 1996
    [2] G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Optics Letters, vol. 23, no. 16, pp. 1310-1312, Aug 15, 1998.
    [3] S.-H. Lin, K. Y. Hsu, W.-Z. Chen, and W.-T. Whang, "Exposure schedule for multiplexing holograms in photopolymer." pp. 100-106.
    [4] S. H. Lin, K. Y. Hsu, W.-Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly (methyl methacrylate) photopolymer bulk for volume holographic data storage,”
    Optics letters, vol. 25, no. 7, pp. 451-453, 2000.
    [5] S.-H. Lin, and K. Y. Hsu, “Temperature effect in PQ:PMMA photopolymer,” Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications VI, vol. 4110, 19 October, 2000.
    [6] Y.-N. Hsiao, W.-T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly (methyl methacrylate)
    hybrid materials,” Optical Engineering, vol. 43, no. 9, pp. 1993-2002, 2004.
    [7] S. H. Lin, P.-L. Chen, C.-I. Chuang, Y.-F. Chao, and K. Y. Hsu, “Volume polarization holographic recording in thick phenanthrenequinone-doped poly (methyl methacrylate) photopolymer,” Optics letters, vol. 36, no. 16, pp. 3039-3041, 2011.
    [8] 林俊華, “PQ/PMMA感光高分子之體積全像特性分析與改進,” 光電工程研究所, 國立交通大學, 新竹市, 2013.
    [9] S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposures
    in PQ/PMMA photopolymer material,” Journal of the Optical Society of America B, vol. 28, no. 11, pp. 2833-2843, 2011.
    [10] N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO 2 nanoparticle dispersed methacrylate photopolymer films,” Applied physics letters, vol. 81, no. 22, pp. 4121-4123, 2002.
    [11] Y. Liu, F. Fan, Y. Hong, A. a. Wu, J. Zang, G. Kang, X. Tan, and T. Shimura, “Volume holographic recording in Al nanoparticles dispersed phenanthrenequinone-doped poly
    (methyl methacrylate) photopolymer,” Nanotechnology, vol. 30, no. 14, pp. 145202, 2019.
    [12] Y. Liu, F. Fan, and X. Tan, “SiO2 NPs-PQ/PMMA Photopolymer material doped with a high-concentration photosensitizer for holographic storage,” Polymers, vol. 12, no. 4, pp. 816, 2020.
    [13] Y. Chen, P. Hu, Z. Huang, J. Wang, H. Song, X. Chen, X. Lin, T. Wu, and X. Tan,
    “Significant enhancement of the polarization holographic performance of photopolymeric materials by introducing graphene oxide,” ACS Applied Materials & Interfaces, vol. 13, no. 23, pp. 27500-27512, 2021.
    [14] P. Hu, J. Li, J. Jin, X. Lin, and X. Tan, “Highly sensitive photopolymer for holographic data storage containing methacryl polyhedral oligomeric silsesquioxane,” ACS Applied Materials & Interfaces, vol. 14, no. 18, pp. 21544-21554, 2022.
    [15] J. Zhu, G. Wang, Y. Hao, B. Xie, and A. Y. Cheng, “Highly sensitive and spatially resolved polyvinyl alcohol/acrylamide photopolymer for real-time holographic
    applications,” Optics Express, vol. 18, no. 17, pp. 18106-18112, 2010.
    [16] L. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. Butovskaya, and E. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical
    recording media,” Optics express, vol. 15, no. 14, pp. 8543-8549, 2007.
    [17] F. Fan, Y. Liu, Y. Hong, J. Zang, G. Kang, T. Zhao, and X. Tan, “Highly concentrated phenanthrenequinone-doped poly (MMA-co-ACMO) for volume holography,” Chinese Optics Letters, vol. 16, no. 11, pp. 110901, 2018.
    [18] F. Fan, Y. Liu, Y. Hong, J. Zang, A. a. Wu, T. Zhao, G. Kang, X. Tan, and T. Shimura, “Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA,” Optics Express, vol. 26, no. 14, pp. 17794-17803, 2018.
    [19] T.-y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg
    grating cavity mirror,” Optics letters, vol. 31, no. 2, pp. 229-231, 2006.
    [20] 詹偉平, “以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究,” 光電科學研究所, 國立中央大學, 桃園縣, 2010.
    [21] 杜隆琦, “以PQ:PMMA製作體積布拉格光柵回饋半導體雷射以達成波長可調之窄波長雷射輸出,” 照明與顯示科技研究所, 國立中央大學, 桃園縣, 2014.
    [22] B.-J. Shih, C.-W. Chen, Y.-H. Hsieh, T.-Y. Chung, and S.-H. Lin, “Modeling the diffraction efficiency of reflective-type PQ-PMMA VBG using simplified rate
    equations,” IEEE Photonics Journal, vol. 10, no. 6, pp. 1-7, 2018.
    [23] 朱汀鈺, “基於吸收光譜行為估計於不同曝光狀況下PQ/PMMA中PQ分子濃度,” 光電科學與工程學系, 國立中央大學, 桃園縣, 2024.
    [24] A. Yariv, and P. Yeh, Optical waves in crystals : propagation and control of laser radiation / Amnon Yariv, Pochi Yeh, Wiley classics library ed., Hoboken, N.J: John
    Wiley and Sons, 2003.
    [25] W. Southwell, “Spectral response calculations of rugate filters using coupled-wave theory,” Journal of the Optical Society of America A, vol. 5, no. 9, pp. 1558-1564,
    1988.
    [26] M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, “Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference,” Optics express, vol. 18, no. 24, pp. 24715-24721, 2010.
    [27] "9,10-Phenanthrenequinone, "https://www.tcichemicals.com/TW/zh_TW/p/P0080.
    [28] "Methyl methacrylate, 99%, stab.," https://www.thermofisher.com/order/catalog/product/A13030.AP?SID=srch-srp-A13030.AP.
    [29] "Azobisisobutyronitrile, "https://en.wikipedia.org/wiki/Azobisisobutyronitrile.
    [30] Y. Qi, H. Li, E. Tolstik, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, “Study of PQ/PMMA photopolymer. Part 1: theoretical modeling,”
    Journal of the Optical Society of America B, vol. 30, no. 12, pp. 3298-3307, 2013.
    [31] "Refractive index database," https://refractiveindex.info/?shelf=organic&book=poly%28methyl_methacrylate%29
    &page=Szczurowski.

    QR CODE
    :::