跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃冠儒
Kuan-Ju Huang
論文名稱: 以奈米孔洞黃金搭配氮化銦鎵量子井製備的表面電漿共振感測器
A Surface Plasmon Resonance Sensor Built with Nanoporous Au/InGaN Quantum Well Hybrid Structure
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 表面電漿共振局域性表面電漿共振光激發螢光光譜表面增強拉曼散射氮化銦鎵量子井
外文關鍵詞: SPR, Quantum well, InGaN, LSPR, SERS, PL
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文為探討在雙面拋光的藍寶石基板上,透過有機金屬化學氣相沉積法(Metal Organic Chemical Vapor Deposition, MOCVD),所成長之氮化鎵/氮化銦鎵(GaN/InGaN)多重量子井,蒸鍍上金、銀交錯的金屬層,再利用退火、濕蝕刻製程,產生具奈米孔洞的黃金層。此奈米金屬層能與量子井產生局部表面電漿共振 (Localized Surface Plasmon Resonance, LSPR),提升螢光分子附近的局部電場強度。
    我們以光致螢光頻譜(photoluminescence),探討表面折射率變化所造成的光譜強度變化,同時藉由掃描式電子顯微鏡(scanning electron microcopy),觀察奈米孔洞金屬的表層結構。為了要驗證LSPR效應,我們將R6G (rhodamine 6G)螢光分子塗佈在奈米孔洞金屬表面,以拉曼頻譜分析R6G所產生的散射訊號。我們發現: 與平坦的黃金層相較,奈米孔洞金屬層並沒有明顯增強R6G的散射強度,此結果顯示金屬層的孔洞直徑、密度、分佈面積都需要更多的製程優化,才能產生有效的LSPR效果。


    This research is aimed to induce the effect of localized surface plasmon resonance (LSPR) on InGaN/GaN multiple quantum wells (QWs). The QWs were grown on double-sided polished sapphire substrates by metal organic chemical vapor deposition (MOCVD). To induce LSPR, the metal layer consisting of alternating Au/Ag is deposited on the QW wafer, followed by the annealing and etching process, producing a nanoporous Au structure.
    Using the photoluminescence (PL) spectra, we study the effect of surface refractive index on the emission intensity from QWs. We also observe the nanoporous Au fabricated with different annealing/etching conditions by scanning electron microscopy (SEM). In order to verify the LSPR effect, we applied rhodamine 6G (R6G) molecules on the nanoporous Au and studied the resultant Raman spectra. Comparing the spectra on flat Au film, the Raman intensity of R6G on the nanoporous Au is not increased. This result suggests that the dimensions, density and effective area of the nanoporous Au have to be further optimized.

    目錄 論文摘要 I Abstract II 誌謝 III 圖目錄 VII 表目錄 IX 中英文名詞縮寫對照表 X 第一章、緒論 1 1.1前言 1 1.2表面電漿共振在生醫感測上的應用 2 1.3氮化物量子井的特性 3 1.4 研究動機與章節架構 5 本文主要分成四個章節: 6 第二章、實驗原理、方法與儀器 7 2.1表面電漿共振的原理 7 2.2金屬奈米結構與表面電漿的耦合原理 14 2.3表面增強拉曼原理介紹 16 2.4掃描式電子顯微鏡(SEM)的原理 17 2.5快速熱退火(RTA)的原理 19 2.6金銀複合金屬的選擇性濕蝕刻 20 2.7光激發螢光光譜原理介紹 21 2.8磊晶結構及製程步驟 23 第三章、分析與討論 26 3.1退火時間對金屬奈米結構的影響 26 3.2光激發螢光頻譜的變化 28 3.3表面增強拉曼光譜探討 32 3.4材料穩定性的評估 37 第四章、結論與未來展望 40 4.1結論 40 4.2未來發展 41 參考文獻 42

    [1] A.Willets and Richard P. Van Duyne .Localized Surface Plasmon Resonance Spectroscopy and Sensing Katherine Annu. Rev. Phys. Chem. 58:267-97. (2007).
    [2]Schultz,D.A.Plasmon resonant particles for biological detection. Curr. Opin.Biotechnol.14(1),13-22 (2003).
    [3]Firdous,S.,Anwar,S.,& Rafya, R.Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases.LASER PHYS LETT, 15(6), 065602. (2018).
    [4]賴彥霖.氮化銦鎵(類量子點)/氮化鎵多重量子井之為結構與光學性質之研究.國立成功大學材料科學及工程學系,博士論文,(2006).
    [5]莊惠雯.氮化銦鎵/氮化鎵多重量子井的光激發光譜.國立中央大學物理研究所, (1999).
    [6]R.W.Wood.On a remarkable case of uneven distribution of light in a different grating spectrum.Philos.Mag.4,pp.396-402 ,(1902).
    [7]A.Hessel,A.A.Oliner.A new theory of Wood’s anomalies on optical gratings. Appl.Opt.4,pp.1275–1297(1965).
    [8]E.Kretschmann,and H. Raether.Radiative decay of non-radiative surface plasmons excited by light.Z. Naturforsch. 23, pp.2135-2136 (1968).
    [9]A.Otto.Excitation of surface plasma waves in silver by the method of frustrated total reflection.Z. Physik 216, pp.398-410 (1968).
    [10]Jules L.Hammond,Nikhil Bhalla,Sarah D.Rafiee and Pedro Estrela.Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries.
    Biosensors Review, 4, 172-188,(2014).
    [11]邱國斌、蔡定平.金屬表面電漿簡介,物理雙月刊(廿八卷二期)2006.
    [12]Kottmann,J.P.Martin,O.J.F.,Smith,D.R.,&Schultz,S.Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B. 64(23)(2001).
    [13] Willets, K.A.; van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.58:267-97(2007).
    [14]Weilie Zhou,Robert P.Apkarian,Zhong Lin Wang,and David Joy.Scanning Microscopy for Nanotechnology. Tech. Appl.(2006)
    [15]鍾思行 “以快速熱退火法加強金屬側向 誘發結晶速率之研究 “國立交通大學,材料科學與工程研究所,碩士論文(2007)
    [16]Bar-Ilan, O.,Albrecht, R. M.,Fako, V. E., & Furgeson, D. Y. Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos. Small nano micro, 5(16)(2009).
    [17]Detsi, E., Salverda, M., Onck, P. R., & De Hosson, J. T. M.On the localized surface plasmon resonance modes in nanoporous gold films. AIP, 115(4), 044308(2014).
    [18]羅道斌 韓香娥 段璐傑.球形金納米顆粒的消光特性及不同折射率環境下的共振波長.西安電子科技大學物理與光電工程學院(2017).
    [19]S.O.eeKucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza.Surface-enhanced Raman scattering on nanoporous Au. Appl Phys Lett. 89, 053102 (2006).
    [20]Belda, R., Herraez, J. V., & Diez, O.A study of the refractive index and surface tension synergy of the binary water/ethanol: influence of concentration.Phys. Chem. Liq., 43(1), 91–101(2005).
    [21]Jon A. Dieringer et al. J. Am. Chem. Soc. Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule. 131, 849–854(2009).
    [22]Yikai Xu, Magdalena P. Konrad, Johann L. Trotter, Colin P.McCoy, and Steven E. J. Bell.Rapid One-Pot Preparation of Large Freestanding Nanoparticle-Polymer Films.small nano micro,13(2),1602163,(2016).
    [23]Le Ru, E. C., Blackie, E., Meyer, M., & Etchegoin, P. G.Surface Enhanced Raman Scattering Enhancement Factors. A Comprehensive Study. J.Phys.Chem.C, 1113713794-13803 (2007).
    [24]S.Stewart and P.M. Fredericks.Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface", Spectrochim. Acta, Part A, 1309-1710(1999).

    QR CODE
    :::