跳到主要內容

簡易檢索 / 詳目顯示

研究生: 馬紹宗
Shao-zong Ma
論文名稱: 整合動態與靜態視覺技術的盲點區域車輛偵測
Blind-spot Vehicle Detection with Dynamic and StaticVision Methods
指導教授: 曾定章
Din-chang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 86
中文關鍵詞: 盲點偵測光流智慧型車輛
外文關鍵詞: ITS, blind-spot detection, optical flow
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來為了減少交通事故,許多車廠皆發展車輛輔助安全駕駛系
    統,期望在許多危險發生前,預先給予駕駛警示。駕駛人在駕駛車輛時,在車的兩側都有一塊無法透過後視鏡觀察到的盲點視線範圍,若駕駛人沒有察覺盲點區域有其他車輛而進行變換車道,則有可造成碰撞。為了確保駕駛人在變換車道時盲點區域確實沒有其他車輛,我們利用在後照鏡下方架設相來拍攝盲點區域的影像,逶過電腦視覺的方法來偵測是否後方有可能造成威脅的來車。
    我們提出的盲點偵測系統包含:定義盲點偵測範圍、在偵測範圍中
    估計光流、將這些得到的光流做進一步篩選和群聚,得到這些由光流群聚所得到的可能為來車的移動物之後,最後在利用追蹤與穩定方法來做最後確認,得到的結果便很有可能是後方來車。另一方面,為了避免被追蹤車輛在追蹤過程中可能因為等速而造成光流向量消失而無法繼續以光流來偵測車輛,在此情況下我們以車底陰影來持續追蹤車輛。
    我們在各種不同的道路環境下進行偵測,由實驗結顯示,在白天狀
    況下市區的側邊車輛偵測率約為95%、在郊區的偵測率約為97%,而在夜晚狀況下偵測率約為90%。我們提出的盲點偵測法在Intel Core 2 Duo?E8400 3.0 GHz CPU, 2GB DDR RAM, Microsoft? Windows 7 機器上有著每秒30 張的處理速度。


    Developing a real-time automotive driver assistant system for safety has emerged wide attention in recent years. When driving on the road, the fields of view beside the host vehicle for drivers are limited. If the driver changes lane without being aware of the objects in the blind-spot area, the potential collision accident may occur. For ensuring the safety of changing lane, our method uses a camera mounted in side-view mirror to capture the image in blind-spot area and detects the vehicle with computer-vision technology.
    The proposed method offers the blind-spot detection includes defining the detection and decision zone, estimating optical flow, filtering and grouping these estimated optical flow and using the process of tracking and stabilization to accomplish the detection. Considering the situation that optical flow disappears in consecutive tracking process, the proposed method detects the vehicle shadow to keep detecting and tracking. The proposed method also uses the shadow to enhance the detection result generated by optical flow.
    We apply the proposed detection method to many different situations. In experiments, the detection rate in urban area in daylight is about 95%. The detection rate in suburban area is about 97%. The detection rate in night is
    about 90%. The detection method operates in Intel? Core 2 Duo? E8400 3.0 GHz CPU, 2GB DDR RAM, Microsoft? Windows 7 has at least 30 frames per seconds.

    摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ II 誌謝 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ III 目錄 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ IV 第一章 緒論 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 一 第二章 相關研究 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 二 第三章 光流估計 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 三 第四章 車輛偵測 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 四 第五章 實驗 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 五 第六章 結論及未來工作 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 六 附錄 英文版論文 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 七 Abstract ............................................................................................................. ii Contents ............................................................................................................ iii Chapter 1 Introduction ...................................................................................... 1 1.1 Motivation ........................................................................................ 1 1.2 System overview .............................................................................. 2 1.3 Thesis organization ........................................................................... 3 Chapter 2 Related Works ................................................................................... 5 2.1 Feature-based detection methods ...................................................... 5 2.1 Optical flow-based detection method ............................................. 10 2.1 Sensor-based detection methods ..................................................... 18 Chapter 3 Optical Flow Estimation ................................................................. 20 3.1 Definition of optical flow and image flow ...................................... 20 3.2 Optical-flow estimation................................................................... 21 3.2.1 Horn and Schunck approach ..................................................... 21 3.2.2 Lucas and Kanade approach ..................................................... 25 3.2.1 Pyramidal structure approach ................................................... 27 Chapter 4 Vehicle Detection ............................................................................ 30 4.1 Definition of detection and decision region .................................... 30 4.2 Feature extraction ............................................................................ 33 4.3 Preprocessing of optical flow .......................................................... 34 4.3.1 Filtering optical flow ................................................................ 34 4.3.2 Grouping optical flow .............................................................. 36 4.4 Lateral vehicle detection ................................................................. 40 4.4.1 Lateral objects hypothesis ........................................................ 42 4.4.2 Lateral objects hypothesis verification ..................................... 43 4.5 Static-information extraction .......................................................... 48 Chapter 5 Experiments .................................................................................... 51 5.1 Experimental environments ............................................................ 51 5.2 Experimental results ........................................................................ 53 5.3 Discussion ....................................................................................... 58 Chapter 6 Conclusion and Future Works ........................................................ 59 6.1 Conclusions ..................................................................................... 59 6.2 Future works.................................................................................... 60

    [1] Achler, O. and M. M. Trivedi, "Vehicle wheel detector using 2D filter
    banks," in Proc. IEEE Intelligence Vehicles Symp., Parma, Italy,
    Jun.14-17, 2004, pp.25-30.
    [2] Alonso J. D., E. R. Vidal, A. Rotter, and M. Mühlenberg, "Lane-change
    decision aid system based motion-driven vehicle tracking," IEEE Trans.
    Intelligent Transportation Systems, vol.9, pp.185-190, 2008.
    [3] Anandan, P., "A computational framework and an algorithm for the
    measurement of visual motion," Int. Jour. of computer Vision, vol.2, no.3,
    pp. 283-310, 2004.
    [4] Baker, S. and I. Matthew, "Lucas-Kanade 20 years on: A unifying
    framework," Int. Jour. of Computer Vision, vol.56, no.3, pp.221-255,
    2003.
    [5] Barron, J. L., D. J. Fleet, and S. S. Beauchemin, "Performance of optical
    flow techniques," Int. Jour. of Computer Vision, vol.12, no.1, pp.43-77,
    1994.
    [6] Batavia, P. H., D. A. Pomerleau, and C. E. Thorpe, "Overtaking vehicle
    detection using implicit optical flow," in Proc. IEEE Conf. on Intelligent
    Transportation System, Pittsburgh, PA, Nov.9-12, 1997, pp.729-734.
    [7] Becker, L. P., A. Debski, D. Degenhardt, M. Hillenkamp, and I.
    Hoffmann, "Development of a camera-based blind spot information
    system," in Advanced Microsystems for Automotive Applications, J.
    Valldorf and W. Gessner, eds., Springer-Verlag, Berlin, 2005, Ch.6,
    pp.71-84.
    [8] Bishop, R., Intelligent Vehicle Technology and Trends, Artech-House,
    Norwood, 2005.
    - 62 -
    [9] Blanc, N., B. Steux, and T. Hinz, "LaRASideCam - a fast and robust
    vision-based blindspot detection system," in Proc. IEEE Intelligent
    Vehicles Symp., Istanbul, Turkey, Jun.13-15, 2007, pp.480-485.
    [10] Bouguet, J. Y., Pyramidal Implementation of the Lucas Kanade Feature
    Tracker Description of the algorithm, OpenCV technical Document,
    Intel Microprocessor Research Labs, 2007.
    [11] Chung, E. Y., H. C. Jung, E. Chang, and I. S. Lee, "Vision based for lane
    change decision aid system," in Proc. of The 1st Int. Forum on Strategic
    Technology, Ulsan, Korea, Oct.18-20, 2006, pp.10-13.
    [12] David, L. S., Z. Wu, and H. Sun, “Contour-based motion estimation,” in
    Comput. Vision Graphics. Image Proc, vol. 23, Jun, 1982, pp. 313-326.
    [13] Horn, B. K. P. and B. G. Schunck, “Determining optical flow,” Int. Jour.
    of Artificial Intelligence, vol. 17, pp.185–204, 1981.
    [14] Huang, Y.-C., A Vision-based Vehicle to Vehicle Detection and Tracking
    System, Master thesis, Computer Science and Information Engineering
    Dept., National Central Univ., Chungli, Taoyuan, Taiwan, 2005.
    [15] Jin, J.-S., Z. Zhu, and G. Xu, "A stable vision system for moving
    vehicles," IEEE Trans. on Intelligent Transportation Systems, vol.1, no.1,
    pp.32-39, 2000.
    [16] Ko, S.-J., S.-H. Lee, and K.-H. Lee, "Digital image stabilizing algorithm
    based on bit-plane matching," IEEE Trans. on Consumer Electronics,
    vol.44, no.3, pp.617-622, 1998.
    [17] Krips, M., J. Valten, and A. kummert, "AdTM tracking for blind spot
    collision avoidance," in Pro. IEEE Intelligent Vehicles Symp., Parma,
    Italy, Jun. 14-17, 2004, pp.544-548.
    [18] Lin, Y.-H., Visual Blind-spot Detection for Lane Change Assistance,
    - 63 -
    Master thesis, Computer Science and Information Engineering Dept.,
    Univ. of Center, Chungli, Taoyuan, 2009.
    [19] Lucas, B. D. and T. Kanade, "An iterative image registration technique
    with an application to stereo vision," in Proc. 7th Int. Joint Conf. on
    Artificial Intelligence, Vancouver, 1981, pp.674-679.
    [20] Mota, S., E. Ros, J. Díaz, G. Botella, F. Vargas-Martin, and A. Prieto,
    "Motion driven segmentation scheme for car overtaking sequences," in
    Proc. of 10th Int. Conf. on Vision in Vehicles, Granada, Spain, Sept.7-10,
    2003.
    [21] Mota, S., E. Ros, E. M. Ortigosa, and F. J. Pelayo, "Bio-inspired motion
    detection for blind spot overtaking monitor," Int. Jour. of Robotics and
    Automation, vol.19, no.4 pp.190-196, 2004.
    [22] Paik, J. K., Y. C. Park, and D. W. Kim, "An adaptive motion decision
    system for digital image stabilizer based on edge pattern matching,"
    IEEE Trans. on Consumer Electronics, vol.38, no.3, pp.607-616, 1992.
    [23] Ratakonda, K., "Real-time digital video stabilization for multimedia
    applications," in Proc. IEEE Symposium on Circuits and Systems,
    Monterey, CA, May 31-Jun.3, 1998, pp.69-72.
    [24] Reichardt, W., "Autocorrelation, a principle for evaluation of sensory
    information by the central nervous system," in Sensory
    Communication,W. A. Rosenblith, ed., Wiley, New York, 1961,
    pp.303-317.
    [25] Ruder, M., W. Enkelmann, and R. Garnitz, “Highway lane change
    assistant,” in Pro. IEEE Intelligent Vehicles Symp, Versailles, France,
    vol.1, pp.240–144, Jun.17-21, 2002.
    [26] Sotelo, M. A., J. Barriga, D. Fernández, I. Parra, J. E. Naranjo, M.
    Marrón, S. Alvarez, and M. Gavilán, "Vision-based blind spot detection
    - 64 -
    using optical flow," Lecture Notes in Computer Science, vol.4739,
    pp.1113-1118, 2007.
    [27] Uornori, K., A. Morimura, H. Ishii, T. Sakaguchi, and Y. Kitamura,
    "Automatic image stabilizing system by full-digital signal processing,"
    IEEE Trans. on Consumer Electronics, vol.36, no.3, pp.510-519, 1990.
    [28] Wang, J., G. Bebis, and R. Miller, "Overtaking vehicle detection using
    dynamic and quasi-Static background modeling," in Proc. IEEE Conf.
    Computer Vision and Pattern Recognition, San Diego, CA, Jun.20-26,
    2005, pp.64-71.
    [29] Wu, B.-F., W.-H. Chen, C.-W. Chang, and C.-J. Chen, "A new vehicle
    detection with distance estimation for lane change warning systems," in
    Proc. IEEE Intelligent Vehicles Symp., Istanbul, Turkey, Jun.13-15, 2007,
    pp.698-703.
    [30] Zhou, J., D. Gao and D. Zhang, "Moving vehicle detection for automatic
    traffic monitoring," IEEE Trans. of Vehicular Technology, vol.56, no.1,
    pp.51-59, 2007.

    QR CODE
    :::