跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳駿維
Chun-Wei Chen
論文名稱: Sn(Cu)焊料與不同NiCo組成合金墊層之介面反應研究
Interfacial reaction between Sn(Cu) solder and NiCo alloy UBM
指導教授: 劉正毓
Cheng-Yi Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 55
中文關鍵詞: 介面反應合金墊層電子構裝
外文關鍵詞: Interfacial reaction, alloy UBM, Electronic Packaging
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討NiCo合金墊層與Sn(Cu)無鉛焊料間的介面反應,首先利用電鍍法將不同Co濃度之NiCo合金層鍍在銅層上,接著將Sn(Cu)焊料與NiCo合金在250 ℃下進行迴焊,最後觀察在介面上生成之介金屬層其生長情形與種類型態並探討NiCo合金組成及焊料Cu濃度對介面反應的影響。
    實驗結果發現在當墊層Co濃度從純Ni、Ni-20%Co、Ni-63at%Co到純Co時,介面生成的介金屬依序為單一相的Ni3Sn4,(Ni,Co)Sn2、(Ni,Co)Sn3及CoSn3,且發現Ni-63at%Co墊層的消耗是所有實驗組別裡最快的,這是因為其生成介金屬的結構較鬆散所致。
    從Sn(Cu)/NiCo反應結果發現對Ni-20at%Co墊層而言,當焊料Cu濃度高於0.2wt%迴焊300秒後,會有額外的針狀(Ni,Cu)3Sn4相生成在第一相(Ni,Co)Sn2上方並發現在焊料裡添加Cu會增快反應中所生成之(Ni,Co)Sn2的生長速率。對純Co及Ni-63at%Co墊層而言,焊料中Cu的添加及Cu濃度的提升對反應後介金屬種類生成沒有影響,其介面生成的相皆為CoSn3,但是其皆會抑制反應中所生成之CoSn3的生長速率。


    In the work, we study soldering reaction between Ni-Co alloy layer and Sn(Cu) Pb-free solders. Different Co concentrations in Ni-Co alloy layer were electroplated on Cu foils. Then, Sn(Cu) solders were reflowed on the Ni-Co alloy layers at 250 ℃ to investigate the growth situation and morphology of IMCs and to discuss the effect of Co concentration and Cu concentration on the reaction between Sn(Cu) and Ni-Co layer.
    Experimental results show that when the composition of NiCo alloy are Ni, Ni-20at%Co, Ni-63at%Co and Co, the corresponding IMCs formed at the interface are Ni3Sn4, (Ni,Co)Sn2, (Ni,Co)Sn3 and CoSn3. We also observe that the consumption of Ni-63at%Co alloy is more serious than other NiCo alloys and it is due to the loose structure of IMCs.
    In the case of Ni-20at%Co, after 300 seconds reflowing additional needle-like phase (Ni,Cu)3Sn4 was formed right above the continuous (Ni,Co)Sn2 layer when Cu concentration overs 0.2wt% and Cu addition enhance the growth rate of (Ni,Co)Sn2. In the case of Ni-63at%Co and Co, as Cu addition and increasing of Cu concentration are performed only CoSn3 formed at the interface, but these factors restrain the growth rate of CoSn3.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 序論 1 1-1 研究背景與目的 1 1-2電子構裝趨勢 3 1-3焊錫凸塊結構與製程技術 4 1-4 無鉛焊料發展 6 第二章 文獻回顧 9 2.1擴散阻障層選擇與作用機制 9 2.2 界面反應 11 2.3 介面反應之文獻回顧 13 2.3.1 Sn/Co反應文獻回顧 13 2.3.2 Sn/NiCu alloy反應文獻回顧 15 2.3.3 SnAgCu/Co-P 反應文獻回顧 18 2.3.4 Sn/NiCo alloy反應文獻回顧 20 第三章 實驗方法與步驟 23 3.1 Sn(Cu)/NiCo接合反應試片製備 23 3.2試片分析 24 3.2.1金相分析 24 3.2.3電子探測分析儀(EPMA)分析 25 第四章 結果與討論 26 4.1 NiCo合金分析結果與討論 26 4.1.1 NiCo合金元素組成分析 26 4.1.2 NiCo合金表面形態分析 28 4.2 Sn焊料與NiCo合金液固介面反應之實驗結果與討論 30 4.2.1 Sn/Ni之液固介面反應 30 4.2.2 Sn/Ni-20at%Co之液固介面反應 31 4.2.3 Sn/Ni-63at%Co之液固介面反應 34 4.2.4 Sn/Co之液固介面反應 35 4.3 Sn(Cu)焊料與NiCo合金液固介面反應實驗結果與討論 39 4.3.1 Sn(Cu)/Co之液固介面反應 39 4.3.2 Sn(Cu)/Ni-63at%Co之液固介面反應 42 4.3.3 Sn(Cu)/Ni-20at%Co之液固介面反應 45 第五章 結論 51 參考文獻 53

    [1] C. Baldwin and T. E. Such, Tran. Institute Metal Finish., 46, p.73, (1968).
    [2] R. Duckett and M. L. Ackroyd, Electroplat. Met. Finish., 29, p.13 (1976).
    [3] R. N. Wild, NEPCON, p.198 (1968).
    [4] M. N. Islam, Y.C. Chan, A. Sharif, M.O. Alam, Microelectronics Reliability., 43, (2003).
    [5] L. Reit, R. Petar, B. Eric, Proceedings Electronic Components & Technology Conforence, 53rd, pp, 1230-1234. (2003).
    [6] W. J. Zhu, H. S. Liu, J. Wang, Z. P. Jin, Journal of Alloys and Compound, (2007).
    [7] W. J. Zhu, J. Wang, H. S. Liu, Z. P. Jin, and W. P. Gong, Materials Science and Engineering A, 456, 109-113, (2007).
    [8] Y. W. Wang, Y. W. Lin, C. T. Tu, C. R. Kao, Journal of Alloys and Compounds, (2008).
    [9] C. E. Ho, S. C. Yang, C. R. Kao, Matter Electron, 155-174, (2007).
    [10] A. Rahn, The Basics of Soldering, John Wiely & Sons, New York (1993).
    [11] 李明勳碩士論文,國立中央大學化工所(2002)。
    [12] J. H. Lau, Chip on Board Technologies for Multichip Modules, VanNostrand Reinhold, An International Thomson Publishing Company, New York, Chapter 5 (1994).
    [13] 黃嘉緯、林光隆,“電子構裝無鉛銲錫的發展現況”,銲接與切割,13卷2 期,92 年六月。
    [14] T. Oppert, E. Zakel and T. Teutsch, IEMT/IMC Proceeding, p.106-113 (1998).
    [15] 張婉君碩士論文,國立中央大學化材所(2004)
    [16] R. A. Swalin, “Thermodynamics of Solid”, 2nd ed. John and Sons (1972).
    [17] D. D. Frear, W. B. Jones, and K. R. Kinsman, Solder Mechanics: A State of the Art Assessment, TMS (1995).
    [18] T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C. Y. Li, “Reactions of Lead-Free Solders with CuNi Metallizations”, Journal of Electronic Materials, Vol. 29, No.10, (2000).
    [19] S. H. Kim, J. Y. Kim, J. Yu, and T. Y. Lee, “Residual Stress and Interfacial Reaction of the Electroplated Ni-Cu Alloy Under Bump Metallurgy in the Flip-Chip Solder Joint”, Journal of Electronic Materials, Vol.33, No.9, (2004).
    [20] H. Han, Y. C. Sohn, and J. Yu, Journal of Electronic Materials, Vol.36, No.5, (2007).
    [21] L. Magagnin, V. Sirtori, S. Seregni, A. Origo, and P. L. Cavallotti, Electrochimia Acta 50 (2005) 4621-4625.
    [22] W. C. Wu, T. E. Hsieh, and H. C. Pan, Journal of The Electrochemical Society, 155 D369-D376 (2008).
    [23] T. Yamamoto, S. Sakatani, S. Kobayashi, K. Uenishi, K. F. Kobayashi, M. Ishio, K. Shiomi, A. Hashimoto, and M. Yamamoto, Materials Transaction, Vol. 46, No. 11 (2005) pp. 2406-2412.
    [24] Y. H. Chao, S. W Chen, C. H. Chang, and C. C. Chen, Metallurgical and Materials Transactions A, Volume 39A, March (2008).
    [25] T. Nishizawa and K. Ishida: in Binary Alloy Phase Diagrams, T.B Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM, Materials Park, OH, 1992, pp. 1214-15.
    [26] D.J. Chakrabarti, D.E. Laughlin, S.-W. Chen, and Y.A. Chang: in Phase Diagrams of Binary Nickel Alloys, P. Nash, ed., ASM, Materials Park, OH, 1991, pp. 85-95.
    [27] P. Nash and A. Nash: Bull. Alloy Phase Diagrams, 1985, vol. 6 (4), pp. 350–59.
    [28] L. Arne and J. Wolfgang: Z. Metallkd., 1996, vol. 87 (10), pp. 759–64.
    [29] I. E. Anderson, and J. L. Harringa, J. Electron. Mater, p.94, (2006).
    [30] C. E. Ho A S. C. Yang A C. R. Kao J Mater Sci: Mater Electron (2007) 18:155-174.

    QR CODE
    :::