| 研究生: |
陳駿維 Chun-Wei Chen |
|---|---|
| 論文名稱: |
Sn(Cu)焊料與不同NiCo組成合金墊層之介面反應研究 Interfacial reaction between Sn(Cu) solder and NiCo alloy UBM |
| 指導教授: |
劉正毓
Cheng-Yi Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 介面反應 、合金墊層 、電子構裝 |
| 外文關鍵詞: | Interfacial reaction, alloy UBM, Electronic Packaging |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討NiCo合金墊層與Sn(Cu)無鉛焊料間的介面反應,首先利用電鍍法將不同Co濃度之NiCo合金層鍍在銅層上,接著將Sn(Cu)焊料與NiCo合金在250 ℃下進行迴焊,最後觀察在介面上生成之介金屬層其生長情形與種類型態並探討NiCo合金組成及焊料Cu濃度對介面反應的影響。
實驗結果發現在當墊層Co濃度從純Ni、Ni-20%Co、Ni-63at%Co到純Co時,介面生成的介金屬依序為單一相的Ni3Sn4,(Ni,Co)Sn2、(Ni,Co)Sn3及CoSn3,且發現Ni-63at%Co墊層的消耗是所有實驗組別裡最快的,這是因為其生成介金屬的結構較鬆散所致。
從Sn(Cu)/NiCo反應結果發現對Ni-20at%Co墊層而言,當焊料Cu濃度高於0.2wt%迴焊300秒後,會有額外的針狀(Ni,Cu)3Sn4相生成在第一相(Ni,Co)Sn2上方並發現在焊料裡添加Cu會增快反應中所生成之(Ni,Co)Sn2的生長速率。對純Co及Ni-63at%Co墊層而言,焊料中Cu的添加及Cu濃度的提升對反應後介金屬種類生成沒有影響,其介面生成的相皆為CoSn3,但是其皆會抑制反應中所生成之CoSn3的生長速率。
In the work, we study soldering reaction between Ni-Co alloy layer and Sn(Cu) Pb-free solders. Different Co concentrations in Ni-Co alloy layer were electroplated on Cu foils. Then, Sn(Cu) solders were reflowed on the Ni-Co alloy layers at 250 ℃ to investigate the growth situation and morphology of IMCs and to discuss the effect of Co concentration and Cu concentration on the reaction between Sn(Cu) and Ni-Co layer.
Experimental results show that when the composition of NiCo alloy are Ni, Ni-20at%Co, Ni-63at%Co and Co, the corresponding IMCs formed at the interface are Ni3Sn4, (Ni,Co)Sn2, (Ni,Co)Sn3 and CoSn3. We also observe that the consumption of Ni-63at%Co alloy is more serious than other NiCo alloys and it is due to the loose structure of IMCs.
In the case of Ni-20at%Co, after 300 seconds reflowing additional needle-like phase (Ni,Cu)3Sn4 was formed right above the continuous (Ni,Co)Sn2 layer when Cu concentration overs 0.2wt% and Cu addition enhance the growth rate of (Ni,Co)Sn2. In the case of Ni-63at%Co and Co, as Cu addition and increasing of Cu concentration are performed only CoSn3 formed at the interface, but these factors restrain the growth rate of CoSn3.
[1] C. Baldwin and T. E. Such, Tran. Institute Metal Finish., 46, p.73, (1968).
[2] R. Duckett and M. L. Ackroyd, Electroplat. Met. Finish., 29, p.13 (1976).
[3] R. N. Wild, NEPCON, p.198 (1968).
[4] M. N. Islam, Y.C. Chan, A. Sharif, M.O. Alam, Microelectronics Reliability., 43, (2003).
[5] L. Reit, R. Petar, B. Eric, Proceedings Electronic Components & Technology Conforence, 53rd, pp, 1230-1234. (2003).
[6] W. J. Zhu, H. S. Liu, J. Wang, Z. P. Jin, Journal of Alloys and Compound, (2007).
[7] W. J. Zhu, J. Wang, H. S. Liu, Z. P. Jin, and W. P. Gong, Materials Science and Engineering A, 456, 109-113, (2007).
[8] Y. W. Wang, Y. W. Lin, C. T. Tu, C. R. Kao, Journal of Alloys and Compounds, (2008).
[9] C. E. Ho, S. C. Yang, C. R. Kao, Matter Electron, 155-174, (2007).
[10] A. Rahn, The Basics of Soldering, John Wiely & Sons, New York (1993).
[11] 李明勳碩士論文,國立中央大學化工所(2002)。
[12] J. H. Lau, Chip on Board Technologies for Multichip Modules, VanNostrand Reinhold, An International Thomson Publishing Company, New York, Chapter 5 (1994).
[13] 黃嘉緯、林光隆,“電子構裝無鉛銲錫的發展現況”,銲接與切割,13卷2 期,92 年六月。
[14] T. Oppert, E. Zakel and T. Teutsch, IEMT/IMC Proceeding, p.106-113 (1998).
[15] 張婉君碩士論文,國立中央大學化材所(2004)
[16] R. A. Swalin, “Thermodynamics of Solid”, 2nd ed. John and Sons (1972).
[17] D. D. Frear, W. B. Jones, and K. R. Kinsman, Solder Mechanics: A State of the Art Assessment, TMS (1995).
[18] T. M. Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C. Y. Li, “Reactions of Lead-Free Solders with CuNi Metallizations”, Journal of Electronic Materials, Vol. 29, No.10, (2000).
[19] S. H. Kim, J. Y. Kim, J. Yu, and T. Y. Lee, “Residual Stress and Interfacial Reaction of the Electroplated Ni-Cu Alloy Under Bump Metallurgy in the Flip-Chip Solder Joint”, Journal of Electronic Materials, Vol.33, No.9, (2004).
[20] H. Han, Y. C. Sohn, and J. Yu, Journal of Electronic Materials, Vol.36, No.5, (2007).
[21] L. Magagnin, V. Sirtori, S. Seregni, A. Origo, and P. L. Cavallotti, Electrochimia Acta 50 (2005) 4621-4625.
[22] W. C. Wu, T. E. Hsieh, and H. C. Pan, Journal of The Electrochemical Society, 155 D369-D376 (2008).
[23] T. Yamamoto, S. Sakatani, S. Kobayashi, K. Uenishi, K. F. Kobayashi, M. Ishio, K. Shiomi, A. Hashimoto, and M. Yamamoto, Materials Transaction, Vol. 46, No. 11 (2005) pp. 2406-2412.
[24] Y. H. Chao, S. W Chen, C. H. Chang, and C. C. Chen, Metallurgical and Materials Transactions A, Volume 39A, March (2008).
[25] T. Nishizawa and K. Ishida: in Binary Alloy Phase Diagrams, T.B Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM, Materials Park, OH, 1992, pp. 1214-15.
[26] D.J. Chakrabarti, D.E. Laughlin, S.-W. Chen, and Y.A. Chang: in Phase Diagrams of Binary Nickel Alloys, P. Nash, ed., ASM, Materials Park, OH, 1991, pp. 85-95.
[27] P. Nash and A. Nash: Bull. Alloy Phase Diagrams, 1985, vol. 6 (4), pp. 350–59.
[28] L. Arne and J. Wolfgang: Z. Metallkd., 1996, vol. 87 (10), pp. 759–64.
[29] I. E. Anderson, and J. L. Harringa, J. Electron. Mater, p.94, (2006).
[30] C. E. Ho A S. C. Yang A C. R. Kao J Mater Sci: Mater Electron (2007) 18:155-174.