| 研究生: |
胡道睿 Tao-Jui Hu |
|---|---|
| 論文名稱: |
氮化銦鎵表面增強拉曼散射的製程優化 Process optimization of InGaN-based surface-enhanced Raman scattering |
| 指導教授: |
賴昆佑
簡汎清 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 拉曼散射 |
| 外文關鍵詞: | Raman scattering |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面增強拉曼散射(surface enhanced Raman scattering, SERS)可大幅提升分子的拉曼散射訊號,已逐漸成為分子診斷的有效工具。在本研究中,我們以鍍金(Au)奈米顆粒的氮化銦鎵(InGaN)微米量子井,作為新型的SERS基板,並以此檢測單股去氧核醣核酸(single-stranded deoxyribonucleic acid, ssDNA)及葡萄糖(glucose)。透過製程上的優化,包括金屬厚度、包覆層厚度、氫氣的蝕刻、退火溫度,來增強分子的SERS訊號。這些製程條件的優化,是為了提升基板表面的局部表面電漿共振(localized surface plasmon resonance, LSPR)和電荷轉移共振(charge transfer resonance, CTR)的強度。我們發現以厚度50nm的金、300℃的退火溫度來製作金奈米顆粒,可以得到最佳檢測效果,以此條件製程的InGaN SERS基板,可檢測濃度低至10-4 M的ssDNA和1 g/L的glucose。
Surface enhanced Raman scattering (SERS) can greatly enhance the Raman scattering signal of molecules, and has gradually become an effective tool for molecular diagnosis. In this study, we used indium gallium nitride (InGaN) quantum wells covered with gold (Au) nanoparticles as a new SERS substrate, and used this to detect single-stranded deoxyribonucleic acid (ssDNA) and glucose. Through optimization of the process, including metal thickness and annealing temperature, we aim to enhance SERS signal of the molecular. The optimization is to promote localized surface plasmon resonance (LSPR) and charge transfer resonance (CTR) on the SERS substrate. We found that the nanoparticles fabricated with 50 nm-thick gold and 300 ℃ annealing temperature produced the highest sensitivity. With these conditions, we were able to detect ssDNA and glucose with the concentrations down to 10-4 M and 1 g/L, respectively.
1. 林鼎晸,朱仁佑,“表面增強拉曼散射光譜的發展與應用",工業材料雜誌261, 150-155(2008)。
2. Dick, L.A. et al. Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss. J. Phys. Chem. B 106, 853-860(2002).
3. Bankowska, M. et al. Au–Cu Alloyed Plasmonic Layer on Nanostructured GaN for SERS Application. J. Phys. Chem. C 120, 1841-1846(2016).
4. Traci, R.J. et al. Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys. Chem. B 104, 10549(2004).
5. 氮化銦鎵奈米量子井的表面增益拉曼散射分析;Study of Surface-Enhanced Raman Scattering on Nano-structured InGaN Quantum wells王菘郁; Wang, Song-Yu , 2018-07-23.
6. Kevin, B. et al. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review. Applied Spectroscopy. 71, 1085-1116(2017).
7. 吳民耀,劉威志,“表面電漿子理論與模擬,”物理雙月刊 28, 486-496(2006)。
8. 邱國斌,蔡定平,“金屬表面簡介,”物理雙月刊 28, 486-496(2006)。
9. Jain P. K. et al. Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Letters. 8, 4347 (2008).
10. Jain, P.K. et al. Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Lett. 8, 4347(2008).
11. Kelly, K.L. et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 107, 668(2003).
12. Kravets, V. G. et al. Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures. Nano Lett. 10, 874(2008).
13. Kreibig, U. et al. Optical Properties of Metal Clusters. (Springer, Berlin, 1995.).
14. 陳瑤真,“表面增強拉曼散射光譜應用於生物單分子偵測,” 國立交通大學,碩士論文,民國九十三年。
15. Jiang, J.D. et al. Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface - Evidence for a charge-transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986).
16. Juan, F.W. et al. The role of charge-transfer states of the metal-adsorbatecomplex in surface-enhanced Raman scattering. J. Chem. Phys, 112, 7669(2000).
17. Lombardi, J. R. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors. Faraday Discuss. 205, 105-120 (2017).
18. Ru, E. C. L. & Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, Amsterdam (2009).
19. Dieringer, J. A. et al. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc. 131, 849-854 (2009).
20. Cong, S. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat Commun. 6, 7800 (2015).
21. Ohkawa, K. et al. 740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE. J. Cryst. Growth. 343, 13-16 (2012).
22. Mukai, T. & Nakamura, S. Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys. 38, 5735-5739 (1999).
23. Catarina, M. et al. Raman spectroscopy and coherent antiStokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. J. R. Soc. Interface 13(2016).
24. Seshan, K., Handbook Of Thin Film Deposition Processes And Techniques(Noyes Publications/William Andrew Pub.,2002).
25. Zhu, F.Y. et al. 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotech. 25, 8(2014).
26. 網路資料: Physics and Astronomy, Surface Enhanced Raman Spectroscopy Introduction. 取自https://newton.ex.ac.uk/research/biomedical-old/optics/sers.html
27. Naomi, J.H. et al. Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Lett. 17,5071-5077(2017).
28. Li-Jia, Xu. et al. Label-free surface-enhance raman spectroscopy detection of DNA with single-base sensitivity. J.Am.Chem.Soc. 137,5149-5154(2015).
29. Hus, J.W. et al. Bottom‐up nano‐heteroepitaxy of wafer‐scale semipolar GaN on (001) Si. Adv. Mater. 27, 4845-4850 (2015).
30. .Sooraj, K.P et al. SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays. Applied Surface Science. 447,579-581(2018).
31. Pascal Anger, et al. Enhancement and Quenching of Single-Molecule Fluorescence. PRL. 96,113002(2006).
32. Weyher, J.L. et al. Relationship between the nano-structure of GaN surface and SERS efficiency; Chasing hot-spots. Apppied Surface Science. 466,554-561(2019).
33. Mao, P. et al. Broadband single molecule SERS detection designed by warped optical spaces. Nat Commun. 9, 5428 (2018).
34. Zhang, X. et al. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304-10309 (2006).
35. Alison, R. UV Absorbance Spectroscopy of Biological Macromolecules. (Springer, Berlin, Heidelberg, 2013).