跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林軍屹
Chun-yi Lin
論文名稱: 應用可調變磁場輔助電化學放電加工石英之研究
Study on Machining of Quartz by Using Adjustable Magnetic Field Assisted in Electrochemical Discharge Machining
指導教授: 顏炳華
Biing-hwa Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 可調變磁場石英電化學放電加工不對稱氣膜型態
外文關鍵詞: Quartz, Electrochemical Discharge Machining, Asymmetric Gas Film Type, Tunable Magnetic Field
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於石英具有的硬脆特性,若以傳統之加工方式很難實現高精度、高效率、高可靠性的加工,特別是在微型零組件的製造上。電化學放電加工(Electro-chemical Discharge Machining, ECDM)是以高溫熔融材料,並且藉此高溫可加速蝕刻速率的非傳統加工方法,相當適合作為加工石英之微製程技術。而由於電化學放電加工主要是藉由電化學反應在電極表面形成之氣膜而產生放電現象之材料移除方式,所以氣膜的結構及穩定性為影響加工效率及精度之關鍵因素。然而於加工過程中,氣膜受到放電高熱的衝擊及電解液循環程度的差異,將使得氣膜結構處在不規則且動態變化的狀態下,造成放電品質的不穩定影響加工效率與品質。因此本研究將首先探討不同電極型式對於加工性能之影響,而後為了提升加工性能,擬以可調變磁場(電磁鐵)來輔助加工改善,提供不同於既有方向之偏向力(勞倫茲力),使氣泡受到此勞倫茲力的影響而脫離電極表面,維持氣膜的穩定性與改善電解液循環效能,進而改善加工效率及精度。
    實驗結果得知,將表面無任何幾合特徵的圓柱電極改為表面具有螺旋溝槽的鑽頭電極,其加工時間縮短了73.8%,可大幅度的提升加工效率。而後再增加可調變磁場的輔助,其加工時間有49.5%的改善幅度,同時對於加工時間的標準差也有91.8%的穩定性提升。最後利用可調變磁場產生的不對稱氣膜型態,進一步提升電解液循環的能力,因此使得加工時間得以再有24.4%的提升。


    Since quartz is a hard and brittle material, it is difficult to achieve high efficiency and high reliability using conventional methods, especially in the manufacturing of micro parts and components. Electrochemical discharge machining (ECDM) is an emerging non-traditional machining process that involves high-temperature melting assisted by accelerated chemical etching. During ECDM, gas film will be formed on the tool electrode surface due to electrochemical reaction and then result in discharge phenomenon. Therefore both the structure and stability of gas film have significant effect factors on the efficiency and precision of machining. During ECDM, the impact of high heat discharged and the differences in electrolyte cycle cause gas film to be irregular in structure and unstable in status. As a result, both the quality and efficiency of ECDM are undermined. Therefore, this study will first explore the effect of different electrode types for processing performance, and in order to improve the stability of gas film structure, this study attempt to use the tunable magnetic field (electromagnet) effect keeps bubbles move quickly form the tool electrode. both the stability of gas film structure and the efficiency of electrolyte cycle in micro holes are greatly enhanced.
    According to the experimental results, by changing the electrode shape, that machining time was reduced by 73.8%, can be substantially improved processing efficiency. Then increase the tunable magnetic field, that machining time was reduced by 49.5%, and the standard deviation of the processing time achieve 91.8%. Finally, tunable magnetic field generated by asymmetric gas film type, further enhance the capacity of the electrolyte cycle. Thus machining time was reduced by 24.4% again.

    摘 要......................................................................................................................i Abstract.................................................................................................................ii 謝 誌....................................................................................................................iii 目 錄....................................................................................................................iv 圖目錄.................................................................................................................vii 表目錄..................................................................................................................ix 第一章 緒論.......................................................................................................1 1-1 研究動機........................................................................................................1 1-2 文獻回顧.......................................................................................................3 1-2-1 探討電化學放電加工原理及加工機制的相關文獻........................................3 1-2-2 探討電化學放電加工製程應用與加工特性的相關文獻................................5 1-3 研究目的........................................................................................................7 第二章 實驗原理...............................................................................................8 2-1 電化學放電加工原理....................................................................................8 2-2 電化學放電加工的化學反應.............................................................................10 2-3 電化學放電加工的放電火花產生過程.............................................................11 2-4 電化學放電加工的材料移除機制.....................................................................13 2-5 放電加工原理..............................................................................................15 2-5-1 放電加工去除機制..................................................................................17 2-5-2 放電加工的優缺點..................................................................................20 2-6 電化學放電加工與放電加工的差異...............................................................21 2-7 線放電研削加工原理.......................................................................................22 第三章 實驗設備、材料與方法..........................................................................23 3-1 實驗設備......................................................................................................23 3-1-1 放電加工機..............................................................................................24 3-1-2 線放電研削(WEDG)機構........................................................................26 3-1-3 電化學放電加工機構..............................................................................27 3-1-4 X-Y Table電極旋轉夾持機構..................................................................28 3-1-5 電磁鐵......................................................................................................29 3-1-6 電磁鐵夾具..............................................................................................29 3-1-7 CCD (Charge Coupled Device)顯微量測系統.........................................30 3-1-8 示波器......................................................................................................30 3-1-9 電源供應器1............................................................................................31 3-1-10 電源供應器2..........................................................................................31 3-1-11 真空濺鍍機.............................................................................................32 3-1-12 精密電子天平........................................................................................32 3-1-13 電磁加熱攪拌器....................................................................................32 3-1-14 去離子純水系統 ....................................................................................32 3-1-15 超音波洗淨機.............................................................................................33 3-1-16 低真空掃瞄式電子顯微鏡....................................................................33 3-2 實驗材料......................................................................................................34 3-2-1 電解液......................................................................................................34 3-2-2 工具電極..................................................................................................36 3-2-3 石墨輔助電極..........................................................................................37 3-2-4 工件材料..................................................................................................38 3-2-5 線電極材料..............................................................................................39 3-3 實驗流程圖..................................................................................................39 3-4 實驗步驟..............................................................................................................40 3-4-1 電極成形前之基本外形製做..........................................................................40 3-4-2 電化學放電加工實驗......................................................................................42 第四章 結果與討論....................................................................................................43 4-1 電極型式對加工時間及孔徑的影響..................................................................44 4-2 磁場強度對於孔徑與加工時間的影響..............................................................51 4-3 加工參數對電化學放電加工的影響..................................................................55 4-3-1 加工電壓 .....................................................................................................55 4-3-2 電解液高度..............................................................................................58 4-4 不同磁場偏壓對於孔徑與加工時間的影響......................................................60 第五章 結論............................................................................................................68 參考文獻.............................................................................................................69

    1.H. Kurafuji and K. Suda, “Electrical discharge drilling of glass,”Annals of the CIRP, Vol. 16, pp. 415-419, 1968.
    2.I. Basak and A. Ghosh, “Mechanism of spark generation during electrochemical discharge machining : a theoretical model and experimental verification ”, Journal of Materials Processing Technology, Vol. 62, pp. 46-53, 1996.
    3.I. Basak and A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol. 71, pp. 350-9, 1997.
    4.V. K. Jain, P. M. Dixit and P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools & Manufacture, Vol. 39, pp. 165-86, 1999.
    5.C. T. Yang, S. S. Ho and B. H. Yan, “Micro hole machining of borosilicate glass trough electrochemical discharge machining (ECDM),” Key Engineering Materials, Vol. 196, pp. 149-166, 2001.
    6.V. Fascio, H.H. Langen, H. Bleuler, Ch. Comninellis, “Investigations of the spark assisted chemical engraving”, Electrochemistry Communications, Vol. 5, pp. 203–207, 2003.
    7.R. Wüthrich, V. Fascio, “Machining of non-conducting materials using electrochemical discharge phenomenon ─ an overview”, International Journal of Machine Tools & Manufacture, Vol. 45, p. 1095, 2005.
    8.M. Jalali, P. Maillard and R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2008.
    9.M. S. Han, B. K. Min and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte ”, Journal of Micromechanics and Microengineering, Vol. 19, 065004, 2009.
    10.H. Kurafuji and K. Suda, “Electrical discharge drilling of glass ”, Annals of the CIRP, Vol. 16, pp. 415-419, 1968.
    11.V. Raghuram, T. Pramila, Y.G. Srinivasa, K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of Materials Processing Technology, Vol. 52, pp. 301-318, 1995.
    12.B. Bhattacharyya, B. N. Doloi and S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials,” Journal of Materials Processing Technology, Vol. 95, pp. 145-154, 1999.
    13.H. J. Lim, Y. M. Lim, S. M. Kim and Y. K. Kwak, “Self-aligned micro tool and electrochemical discharge machining (ECDM) for ceramic materials”, Proc. SPIE, Vol. 4416, pp. 348-53, 2001.
    14.W. Y. Peng, Y. S. Liao, Study of electrochemical discharge machining technology for slicing non-conductive brittle materials, Journal of Materials Processing Technology, 149 (2004) 363-369.
    15.R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. H. Mandin and G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, 15 (2005) S268-275.
    16.R. Wüthrich, U. Spaelter, Y. Wu and H. Bleuler, “A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving(SACE) ”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 1891-1896, 2006.
    17.R. Wüthrich, B. Despont, P. Maillard and H Bleuler, “Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration”, Journal of Micromechanics and Microengineering, Vol. 16, N28, 2006.
    18.R. Wüthrich, L. A. Hof, “The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications”, International Journal of Machine Tools & Manufacture, Vol. 46 , pp. 828–835, 2006.
    19.M. Mousa, A. Allagui, H. D. Ng and R. Wüthrich, “The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling”, Journal of Micromechanics and Microengineering, Vo.19, 015010, 2008.
    20.M. S. Han, B. K. Min and S. J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte ”, Journal of Micromechanics and Microengineering, Vol. 19, 065004, 2009.
    21.R. Wüthrich, U. Spaelter and H. Bleuler, “The current signal in spark-assisted chemical engraving (SACE): what does it tell us?,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 779-785, 2006.
    22.楊景棠,「微電化學放電加工法應用於硼矽玻璃的精微加工及精度改善之研究」,國立中央大學,博士論文,民國96年。
    23.鄭志平,「微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究」,國立中央大學,博士論文,民國97年。
    24.楊程光,「電化學放電加工法應用於石英的精微加工研究」,國立中央大學,博士論文,民國100年。
    25.許玉山,「硼矽玻璃的磁場輔助電化學放電加工技術研究」,國立中央大學,碩士論文,民國97年。
    26.林瑞哲,「應用球狀電極改善石英之電化學放電加工特性研究」,國立中央大學,碩士論文,民國99年。

    QR CODE
    :::