| 研究生: |
陳宇恆 Yu-Heng Chen |
|---|---|
| 論文名稱: |
基於數位光學相位共軛器浮空於多重鏡面之立體投影之研究 Study of 3D Projection Floating over Confetti-Like Quasi-Specular Surfaces Based on Digital Optical Phase Conjugator |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 數位光學相位共軛器 、自泵相位共軛器 、立體投影 、多重鏡面 、數位全像 、共軛聚焦 |
| 外文關鍵詞: | Self-pumped phase conjugator, Conjugate focusing |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉小貓自泵相位共軛器應用於數位光學共軛器大幅提升系統對位精準度,利用其大角度容忍範圍、快速、穩定等天生優勢以及自發性產生自泵共軛光之特性達成像差補償的目的。憑藉以上優點,本團隊建構出一套高效能的數位光學共軛器。本論文將此數位光學相位共軛器搭配碎花狀鏡面材料發展出一套得以保存全光學資訊的全像立體投影系統,不但突破性地將數位光學相位共軛技術應用在立體投影,更建構出一套可分析多種系統參數對於共軛聚焦點行為分布的立體投影模型,相信此技術更對未來立體顯示領域擁有極大的助益。
In this paper, we demonstrate a Kitty self-pumped phase conjugate mirror (Kitty-SPPCM) applied to digital optical phase conjugator (DOPC). The inherent advantages of Kitty-SPPCM are high angular-tolerance, fast, stable, etc. The most crucial point is that Kitty-SPPCM is able to generate spontaneous conjugate beams, which can do systematic phase compensation. With the aid of the point, we invent a high-quality DOPC system. Using the DOPC system along with confetti-like quasi-specular surfaces, we invent a 3D holographic projection system which saves entire optical information. Furthermore, a model of the 3D projection system which is able to analyze multiple systematic parameters in order to observe the intensity distribution of the conjugate focal point is successfully built. We believe that the state-of-the-art 3D-projection system based on DOPC has great potential to the field of futuristic 3D projection.
[1] A. J. Woods and T. Rourke, “Ghosting in anaglyphic stereoscopic images,” Proc. SPIE 5291, Stereoscopic Displays and Virtual Reality Systems XI, 354-365 (2004).
[2] F. Matsuura and N. Fujisawa, “Anaglyph stereo visualization by the use of a single image and depth information,” J. Vis. 11, 79-86 (2008).
[3] I. Ideses and L. Yaroslavsky, “New methods to produce high quality color anaglyphs for 3-D visualization,” International Conference Image Analysis and Recognition 3212, 273-280 (2004).
[4] I. Ideses and L. Yaroslavsky, “Three methods that improve the visual quality of colour anaglyphs,” J. Opt. A: Pure Appl. Opt. 7, 755-762 (2005).
[5] S. Erik, B. Sorensen, P. S. Hansen, and N. L. Sorensen, “Method for recording and viewing stereoscopic images in color using multichrome filters,” US Patent US 6687003 (2004).
[6] H. Jorke, A. Simon, and M. Fritz, “Advanced stereo projection using interference filters,” J. Soc. Inf. Disp. 17, 407-410 (2009).
[7] J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[8] P. J. Bos, and K. R. Koehler, “The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device,” Mol. Cryst. Liquid Cryst. 113, 329-339 (1984).
[9] Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “20.2: Stereoscopic 3D display using patterned retarder,” SID Symp. Dig. Tech. Papers. 39, 260-263 (2008).
[10] L. Bogaert, Y. Meuret, B. V. Giel, H. Murat, H. D. Smet, and H. Thienpont, “Projection display for the generation of two orthogonal polarized images using liquid crystal on silicon panels and light emitting diodes,” Appl. Opt. 47, 1535-1542 (2008)
[11] L. Bogaert, Y. Meuret, B. V. Giel, H. D. Smet, and H. Thienport, “Design of a compact projection display for the visualization of 3-D images using polarization sensitive eyeglasses,” J. Soc. Inf. Disp. 17, 603-609 (2009).
[12] W. Kruger, C. A. Bohn , B. Frohlich, H. Schuth, W. Strauss, and G. Wesche, “The Responsive Workbench: a virtual work environment,” Computer 28, 42-48 (1995).
[13] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart, “The CAVE:Audio visual experience automatic virtual environment,” Commun. ACM 35, 64–73 (1992).
[14] J. Leigh, A. Johnson, L. Renambot, T. DeFanti, M. Brown, B. Jeong, R. Jagodic, C. Krumbholz, D. Svistula, H. Hur, R. Kooima, T. Peterka, J. Ge, and C. Falk, “Emerging from the CAVE: Collaboration in ultra high resolution environments,” Proc. 1st Int. Symp. Universal Commun. 6, 2007-06 (2007).
[15] V. Ferrari, G.Megali, E. Troia, A. Pietrabissa, and F. Mosca, “A 3-D mixed-reality system for stereoscopic visualization of medical dataset,” IEEE Trans. Biomed. Eng. 56, 2627-2633 (2009).
[16] Sensics, “Sensics-Lightweight panoramic head-mounted displays,” Accessed Sep. 19, 2010. [Online]. Available: http://sensics.com/
[17] G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer-tracking autostereoscopic 3D display systems,’’ Proc. SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 187 (1997).
[18] R. Y. Tsai, C. H. Tsai, K. Lee, C. L. Wu, L. C. D. Lin, K. C. Huang, W. L. Hsu, C. S. Wu, C. F. Lu, J. C. Yang, and Y. C. Chen, “Challenge of 3D LCD displays,’’ Proc. SPIE 7329, 732903 (2009).
[19] Y. H. Tao, Q. H. Wang, J. Gu, W. X. Zhao, and D. H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34, 3220-3222 (2009).
[20] H. Nishimura, T. Abe, H. Yamamoto, Y. Hayasaki, and N. Nishida, “Development
of 140-inch autostereoscopic display by use of full-color led panel,’’ Proc. SPIE 6486, Light-Emitting Diodes: Research, Manufacturing, and Applications XI, 64861B (2007).
[21] R. B. Johnson and G. A. Jacobsen, “Advances in lenticular lens arrays for visual display,’’ Proc. SPIE 5874, Current Developments in Lens Design and Optical Engineering VI, 587406 (2005).
[22] D. K. G. deBoer, M. G. H. Hiddink, M. Sluijter, O. H. Willemsen, and S. T. de Zwart, “Switchable lenticular based 2D/3D displays,’’ Proc. SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV, 64900R (2007).
[23] Y. G. Lee and J. B. Ra, “Image distortion correction for lenticular misalignment in three-dimensional lenticular displays,” Opt. Eng. 45, 017007 (2006).
[24] T. Ando, K. Mashitani, M. Higashino,H. Kanayama, H. Murata, Y. Funazou, N. Sakamoto, H. Hazama, Y. Ebara, and K. Koyamada, “Multiview image integration system for glassless 3D display,’’ Proc. SPIE 5664, Stereoscopic Displays and Virtual Reality Systems XII, 158–166 (2005).
[25] K. Mashitani, G. Hamagishi, M. Higashino,T. Ando, and S. Takemoto, “Step barrier system multiview glassless 3D display,’’ Proc. SPIE. 5291, Stereoscopic Displays and Virtual Reality Systems XI, 265-272 (2004).
[26] T. Endo, Y. Kajiki, T. Honda, and M. Sato, “Cylindrical 3D video display observable from all directions,’’ Proceedings the 8th Pacific Conference on Computer Graphics and Applications 2000, 300-306 (2000).
[27] Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94, 654-663 (2006).
[28] T. Baloch, “Method and apparatus for displaying three-dimensional images,” U.S. Patent US6201565 B1 (2001).
[29] M. Sayinta, and H. Urey. “Scanning LED array based volumetric display,” Proc. IEEE 3DTV Conf., 1-4 (2007).
[30] K. Maeno, N. Fukaya, O. Nishikawa, and T. Honda, “Electroholographic display using 15-megapixel LCD,” Proc. SPIE 2652, Practical Holography X, 15-23 (1996).
[31] J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386 (2008).
[32] S. Reichelt, R. Häussler, N. Leister, G. Futterer, and A. Shwerdtner “Large holographic 3D displays for tomorrow’s TV and monitors-solutions, challenges, and prospects,” LEOS 2008, 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 194-195 (2008).
[33] R. Häussler, A. Schwerdtner, N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. of SPIE 6803, Stereoscopic Displays and Applications XIX, 68030M (2008).
[34] S. Reichelt, H. Sahm, N. Leister, and A. Schwerdtner, “Capabilities of diffractive optical elements for real-time holographic displays,” Proc. SPIE 6912, Practical Holography XXII: Materials and Applications, 69120P (2008).
[35] A. Schwerdtner, R. Häussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. of SPIE 6912, Practical Holography XXII: Materials and Applications, 69120T (2008).
[36] N. Leister, A. Schwerdtner, G. Futterer, S. Buschbeck, J. C. Olaya, and S. Flon, “Full-color interactive holographic projection system for large 3D scene reconstruction,” Proc. SPIE 6911, Emerging Liquid Crystal Technologies III, 69110V (2008).
[37] F. Yaraş, H. Kang, and L. Onural, “Circularly configured multi-SLM holographic display system,” 2011 IEEE 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 1-4 (2011).
[38] T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51, 1771-1780 (2012).
[39] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTiO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[40] F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niabate,” Appl. Phys. Lett. 13, 223-225 (1968).
[41] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969).
[42] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals I. Steady state,” Ferroelectrics 22, 949-960 (1979).
[43] J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982).
[44] P .Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quant. Electronics 25, 484-519 (1989).
[45] A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16-18 (1977).
[46] M. Cronin-Golomb, J. O. White, B. Fischer, and A. Yariv, “Exact solution of a nonlinear model of four-wave mixing and phase conjugation,” Opt. Lett. 7, 313-315 (1982).
[47] R. A. Fisher, Optical Phase Conjugation (Academic Press, New York, 1983).
[48] C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang J. Y. Chang, and M. W. Chang, “Shearing interferometer with a kitty self-pumped phase-conjugate mirror,” Appl. Optics 35, 1815-1819 (1996).
[49] W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Optics 43, 1728-1733 (2004).
[50] C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Optics 40, 1253-1260 (2001).
[51] C. C. Sun, S. Yeh, M. W. Chang, and K. Y. Hsu, “Optimal incident conditions for a cat-type self-pumped phase-conjugate mirror,” Appl. Optics 31, 5769-5772 (1992).
[52] B. Wang, C. C. Sun, W. C. Su, and A. E. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Optics 39, 4788-4793 (2000).
[53] W. C. Su, Y. W. Chen, Y. Ouyang, C. C. Sun, and B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117-123 (2003).
[54] C. C. Sun, W. C. Su, B. Wang, and A. E. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001).
[55] H. F. Yao, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, “Ordinary polarized phase conjugator using the photovoltaic effect,” Opt. Commun. 184, 257-263 (2000).
[56] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples”, Nat. Photonics 2, 110-115 (2008).
[57] M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444-3455 (2010).
[58] C. Yang and M. Cui, “Turbidity suppression by optical phase conjugation using a spatial light modulator,” California Institute of Technology, US Patent US8717574 B2 (2011).
[59] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence image with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[60] B. Judkewitz, Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, “Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE),” Nat. Photonics 7, 300-305 (2013).
[61] K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657-661 (2012).
[62] Y. M. Wang, and C. Yang, “Acoustic-assisted iterative wave form optimization for deep tissue focusing,” California Institute of Technology, US Patent US 20120070817 A1 (2012).
[63] M. Jang, A. Sentenac, and C. Yang, “Optical phase conjugation (OPC)-assisted isotropic focusing,” Opt. Express 21, 8781-8792 (2013).
[64] M. Cui and C.Yang, “Optical phase conjugation 4Pi microscope,” California Institute of Technology, US Patent US8830573 B2 (2014).
[65] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012).
[66] I. N. Papadopoulos, S. Farahi, C. Moser, and Demetri Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260-270 (2016).
[67] C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283-12290 (2010).
[68] I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
[69] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[70] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728-735 (2015).
[71] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012).
[72] C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723-20731 (2010).
[73] Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[74] E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
[75] E. N. Leith and J. Upatnieks, “Wavefront Reconstruction with Continuous-Tone Objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963)
[76] J. W. Goodman, Introduction to Fourier Optics (Mcgraw-Hill, New York, 1996).
[77] J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-488 (1982).
[78] A.E. Chiou, T. Y. Chang, and M. Khoshnevisan, “High-speed photorefractive phase conjugator with large dynamic range and wide field of view,” OSA Annual Meeting 15, 40 (1990).
[79] A. E. Chiou, “Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects,” Proc. IEEE 87, 2074-2085 (1999).
[80] P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328-1330 (2013).
[81] J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Optics 17, 085301 (2015).
[82] C. Gu and P. Yeh, “Partial phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107, 353-357 (1994).