跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳琮凱
Tsung-Kai Wu
論文名稱: 紅外波段分光之全像集光器應用
Holograms for dividing infrared spectrum in solar concentrator application
指導教授: 李朱育
Ju-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 74
中文關鍵詞: 全像光學元件分光重鉻酸明膠繞射波段調制
外文關鍵詞: hologram optical element, spectrum dividing, dichromated gelatin, diffraction wave band modulate
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究太陽能應用中分光器的設計,利用全像光學元件具有繞射分光之特性,透過短波長曝光長波長重建之技術,有效地繞射太陽光中紅外波段光,進而達到分光的效果。
    根據全像記錄材料特性的不同,其應用的範圍和需求也有所不同。本論文中使用之感光記錄材料為重鉻酸明膠 (DCG),其具有高繞射效率、高解析度、高調制折射率、低訊噪比和低吸收等優點,在全像分光元件製作中為最合適的記錄材料。並利用改變拍攝幾何架構之參數,即改變記錄光角度,可改變繞射波段之中心波長。
    由文獻得知,繞射效率的高低與調制折射率有關。故為了拍攝出理想中之分光全像光學元件,如何找出最佳曝光時間點和實驗幾何架構的參數設計,即成為本論文主要研究的重點。
    利用理論推導和量測證實,實驗所拍攝出之全像元件在近紅外波段之繞射效率峰值可達到70%,近紅外波段平均繞射效率可達到40%,理論與實驗之平均繞射波段中心波長偏移量約為140 nm。
    本論文利用改變全像拍攝幾何架構的方式,可以將繞射波段有效地紅移至近外紅波段,未來可搭配高集光倍率之集光器(菲涅爾透鏡),將可見光和紅外光分開聚焦並轉換,有效地提高光電、光熱之轉換效率。


    In this thesis, the principle is based on Spectrum-Dividing Technology for solar application. By using hologram optical element which can record interference signals by short wavelength light, and change incident angle of record light, long wavelength light can be reconstructed. The infrared part of sunlight can be diffracted effectively.
    According to the difference from the characteristics of hologram optical elements (HOE), the application scope and requirement change enormously. In this thesis we choose dichromated gelatin between the materials with high diffraction efficiency, high resolution, high refractive index modulation, low signal to noise ratio and low absorption. Furthermore, if we change the parameters of system configuration, i.e. the incident angle of record light, the diffraction wave band will change relatively.
    The literature shows that the higher refractive index modulation causes the higher diffraction efficiency. In order to get high diffraction efficiency and diffraction wave band in infrared, finding the best exposure time as well as optimized parameters of system configuration are important in this thesis.
    The experiment results demonstrate that the maximum of diffraction efficiency in infrared can achieved about 70%, the average of diffraction efficiency in infrared is about 40% and the average central wavelength deviation of diffractive wave band between theoretical values and experiment results is about 140 nm.
    In the future, hologram can combine with Fresnel lens such that visible light and infrared can be separated and focused at two points respectively, and collecting them by using photoelectric and photothermal systems which can increase solar conversion efficiency.

    摘要---I ABSTRACT----II 致謝--- III 目錄--- IV 表目錄--- VI 圖目錄--- VII 縮寫與符號對照表---IX 第一章 緒論---1 1.1 研究背景---1 1.2 文獻回顧---3 1.3 研究目的---6 1.4 論文架構---7 第二章 體積全像光柵繞射特性與分光原理---8 2.1 全像光學元件特性與應用---8 2.2 全像光學元件記錄與重建原理---11 2.3 耦合波理論---14 2.4 短波長拍攝長波長重建技術---17 2.5 布拉格條件---22 2.6 全像光學元件記錄介質分類---24 2.7 小結---25 第三章 實驗架構---26 3.1 拍攝架構參數建立與理論模擬---26 3.2 全像元件拍攝架構---26 3.3 全像元件顯影定影流程---27 3.4 全像元件繞射效率量測架構---28 3.5 全像記錄材料規格介紹---29 3.6 實驗儀器相關規格介紹---30 3.7 小結---32 第四章 實驗結果討論與分析---33 4.1 記錄光角度設計與分析---33 4.2 全像元件繞射效率與頻譜分析---33 4.3 繞射光角度分析---46 4.4 穿透光能量與繞射光能量分析---48 4.5 穩定度分析---52 4.6 遇到困難與解決方式 ---53 4.7 小結---54 第五章 結論與未來展望---55 5.1 結論---55 5.2 未來展望---55 REFERENCE---57 附錄---61

    [1] J. P. Painuly, “Barriers to renewable energy penetration; a framework for analysis”, Renewable Energy, Vol. 24, pp. 73-89, 2001.
    [2] M. Hoogwijk, On the global and regional potential of renewable energy sources, Thesis Utrecht University., 1974.
    [3] T. B. Johansson, H. Kelly, A. K. N. Reddy, Robert Williams, Renewable Energy: Sources for Fuels and Electricity, Island Press, 1992.
    [4] S. A. Omer, D. G. Infield, “Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation”, Energy Conversion and Management, Vol. 41, pp. 737-756, 2000.
    [5] A. A. Mohamad, ”High efficiency solar air heater”, Fuel and energy Abstract., Vol. 38, pp. 243-244, 1997.
    [6] M. Yamaguchi, A. Luque, “High efficiency and high concentration in photovoltaics”, IEEE Transactions on Electron Devices, Vol. 46, pp. 2139-2144, 1999.
    [7] M. A. Green, Z. Jianhua, A. Wang, S. R. Wenham, “Very High Efficiency Silicon Solar Cells—Science and Technology”, IEEE Transactions on Electron Devices, Vol. 46, pp. 1940-1947, 1999.
    [8] K. W. J. Barnham, G. Duggan, “A new approach to high-efficiency multi-band-gap solar cells”, Jourmal of Applied Physics, Vol. 67, pp. 3490-3493, 1990.
    [9] A. Rabl, “Comparison of solar concentrators”, Solar Energy, Vol. 18, pp. 93-111, 1975.
    [10] O''neill, J. Mark, Solar concentrator and energy collection system, United States Patent 4069812, 1978.
    [11] E. Lorenzo, A. Luque, “Fresnel lens analysis for solar energy applications”, Applied Optics, Vol. 20, pp. 2941-2945, 1981.
    [12] D. T. Nelson, D. L. Evans, R. K. Bansal, “Linear Fresnel lens concentrators”, Solar Energy, Vol. 17, pp. 285-289, 1975.
    [13] R. B. Bergmann, “Crystalline Si thin-film solar cells: a review”, Applied Physics A: Materials Science & Processing, Vol. 69, pp. 187-194, 1999.
    [14] M. A. Green, Solar cells: Operating principles, technology, and system applications, Englewood Cliffs, 1981.
    [15] H. Chenming, R. M. White, Solar cells: From basic to advanced systems, Mc graw-Hill college, 1983.
    [16] D. E. Carlson., “Amorphous-silicon solar cells”, IEEE Transactions on Electron Devices, Vol. 36, pp. 2775-2780, 1989.
    [17] G. B. Stringfellow, “VPE Growth of III/V Semiconductors”, Annual Review of Materials Science, Vol. 8, pp. 73-98, 1978.
    [18] A. W. Bett, F. Dimroth, G. Stollwerck, O. V. Sulima, “III-V compounds for solar cell applications”, Applied Physics A: Materials Science & Processing, Vol. 69, pp. 119-129, 1999.
    [19] H. H. John, Saxena, Ragini, “Diffraction efficiency of volume holograms written by coupled beams”, Optics Letters., Vol. 16, pp. 180-182, 1991.
    [20] J. D. Edmond, Solar energy converter, US Patent 2949498, 1960.
    [21] J. J. Loferski, “Tandem photovoltaic solar cells and increased solar energy conversion efficiency", Photovoltaic Specialists Conference, pp. 957–961, 1976.
    [22] M. F. Lamorte, D. Abbott, “Two-junction cascade solar cell characteristics under 1000 concentration ratio and AM0-AM5 spectral conditions", Photovoltaic Specialists Conference, pp. 874-880, 1978.
    [23] M. Wolf, “Limitations and possibilities for improvements of photovoltaic solar energy converters”, Proceedings of the IRE, Vol. 48, pp. 1246–1263, 1960.
    [24] G. W. Masden, C. E. Backus, “Increased photovoltaic conversion efficiency through use of spectrum splitting and multiple cells", Photovoltaic Specialists Conference, pp. 853–858, 1978.
    [25] J. R. Onffroy, D. E. Stoltzmann, R. J. H. Lin, G. R. Knowles, “High-efficiency concentration/multi solar-cell system for orbital power generation”, Journal of Energy, Vol. 6, pp. 371–376, 1982.
    [26] D. C. White, B. D. Wedlock, J. Blair, “Recent advance in thermal energy conversion", Proceedings of 15th Power Source Conference, pp. 125–132, 1961.
    [27] B. D. Wedlock, “Thermo-photo-voltaic energy conversion”, Proceedings of the IEEE, Vol. 51, pp. 694–698, 1963.
    [28] A. M. Hermann, “Luminescent solar concentrators: a review”, Solar Energy, Vol. 29, pp. 323-329, 1982.
    [29] McGrew, P. Stephen, Solar power system, US Patent 4204881, 1980.
    [30] K. Froehlich, Wagemann, U. Ermit, H. Schulat, Schuette, Hartmut, Stojanoff, G. Christo “Fabrication and test of a holographic concentrator for two color PV-operation”, Proceedings of SPIE, Vol. 2255, pp. 812-821, 1994.
    [31] J. E. Ludman, J. Riccobono, I. V. Semenova, W. Tai, L. Xaoli, G. Syphers, E. Rallis, G. Sliker, J. Martin, “The optimization of a holographic system for solar power generation”, Solar Energy, Vol. 60, pp. 414-415, 1997.
    [32] 沈觀葆, 「全像太陽能集光器之研製」, 國立台灣大學, 碩士論文, 民國78年。
    [33] 林政民, 「應用於太陽能收集器之全像光學元件製造與性能測試」, 國立台灣大學, 碩士論文,民國90年.
    [34] C. G. Stojanoff, R. Kubitzek, S. Tropartz, K. Frohlich, O. Brasseur, “Design, fabrication and integration of holographic dispersive solar concentrator for terrestrial applications”, Proceedings of SPIE, Vol. 1536, pp. 206-214, 1991.
    [35] Tholl, D. Hans, Luebbers, A. Hubertus, Stojanoff, G. Christo “Analysis of the chromatic aberrations of imaging holographic optical elements”, Proceedings of SPIE, Vol. 1456, pp. 262-273, 1991.
    [36] R. E. Bird, C. Riordan, “Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth''s Surface for Cloudless Atmospheres”, Journal of Applied Meteorology, Vol. 25, pp. 87-97, 1986.
    [37] 駱志龍, 「Fresnel透鏡設計及應用」, 國立中央大學, 碩士論文, 民國90年.
    [38] K. Yoshika, K. Endoh, M. Kobayashi, A. Suzuki, T. Saitoh, “Design and properties of a refractive static concentrator module”, Solar Energy Materials and Solar Cells, Vol. 34, pp. 125-131, 1994.
    [39] Stojanoff, G. Christo, Froening, Philipp, Schulat, Jochen, “Use of filler material in DCG films for predictable shift of the spectral characteristics of holograms”, Proceedings of SPIE, Vol. 3638, pp. 61-71, 1999.
    [40] 陳敬恒, 「使用全像空間偏離偏極器之多埠光學循環器」, 國立交通大學, 博士論文, 民國93年.
    [41] 陳逸寧, 基礎雷射全像術, 全華書局, 台灣, 民國94年.
    [42] H. Kogelnik. “Coupled Wave Theory for Thick Hologram Gratings”, The Bell System Technical Journal, Vol.48, pp.2909-2947, 1969.

    QR CODE
    :::