| 研究生: |
陳農彬 Nung-pin Chen |
|---|---|
| 論文名稱: |
應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度 Estimation of longitudinal and transverse dispersivities in two-dimensional radially convergent flow field tracer test using artificial neural networks. |
| 指導教授: |
陳瑞昇
Jui-sheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 延散度 、類神經網路 、倒傳遞類神經網路套配模式 、追蹤劑試驗 |
| 外文關鍵詞: | artificial neural network, dispresivities, tracer test, back propagation neural network fitting model |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
污染物於含水層中的傳輸行為常藉由移流-延散方程式描述,其中延散度為重要輸入參數,而推估延散度須先進行現地追蹤劑試驗,分析追蹤劑試驗濃度穿透曲線,並藉由數學模式所產生之標準曲線套配進行參數推估即可求得試驗場址之延散度,傳統標準曲線套配法需花費大量時間及具有曲線擬合不佳等缺點,造成實際應用的難題。本研究提出以類神經網路模式結合二維徑向收斂流場追蹤劑試驗模式建構倒傳遞套配模式(Back Propagation Neural Network Fitting Model, 簡稱BPNFM)提高延散度推估效率及精確度。結果顯示有效孔隙率介於 範圍內網路輸出值與目標輸出值之相對誤差均低於0.9 %;縱向延散度介於 範圍內相對誤差均低於3%;側向延散度介於 範圍內相對誤差均低於0.25 %,各套配模式在其適用範圍內均可獲得良好之輸出精確度。而套配效率上,倒傳遞套配模式可大幅縮短標準曲線套配法套配過程所耗費的時間,因此證實二維徑向收斂流場追蹤劑試驗套配模式可有效率地套配追蹤劑試驗數據,獲致可靠之延散度參數。
The transport process of solute in the aquifer as widely described by advection-dispersion equation (ADE). Dispersivities are the important input parameters for ADE. To obtain those parameters, a general methodology suggested to analyze the breakthrough curves (BTCs) plotted from tracer test. However, the artificial curve fitting causes lots of time consuming and errors. In this study, we try to promote one efficiency and accuracy method to estimate dispersivities. A back propagation neural network fitting model (BPNFM), combing with the neural network model and the two dimensional radially convergent flow tracer test is developed. Results show that the relative errors between target and network output data of effective porosity fall in the region from 0.05 to 0.5 is less than 0.9%; of longitudinal dispersivity distributed from 0.2m to 40m is less than 3%; of transverse dispersivity distributed from 0.033m to 6.427m is less than 0.25%. The consuming time can be reduced significantly by BPNFM, while the predicted parameters fall in the model setting, BPNFM is a accuracy and efficiency method for analyzing the dispersivities of the tracer tests.
[1] Satuy, J. P., An analysis of hydrodispersive transfer in aquifer, Water Resour. Res., vol. 16, no. 1, 1980, pp. 145-158.
[2] Slichter, C.S., Field measurements of the rate of movement of underground waters, United States Geological Survey Water-Supply and Irrigation Paper 140, 1905.
[3] Ogata, A., Theory of dispersion in a granular medium, Geological Survey Professional Paper, vol. 441-I, 1970.
[4] Guvanasen, V., and V. M. Guvanasen, An approximate semi-analytical solution for tracer injection tests in a confined aquifer with a radially convergent flow field and finite volume of tracer and chase fluid, Water Resour Res., vol. 23, no. 8, 1997, pp. 1607-1619.
[5] Domenico, P. A., and F. W. Schwartz, Physical and Chemical Hodrology, New York: John Wiley & Sons, 1990.
[6] Carrera, J., and G. Walter, Theoretical developments regarding simulation and analysis of convergent flow tracer test. Sandia National Laboratories, 1985.
[7] Novakowski, K. S.,The analysis of tracer experiments conducted in divergent radial flow fields. Water Resour. Res., 1992, 28(12): 3215-3225.
[8] Welty, C. and Gelhar, L. W., Evaluation of longitudinal dispersivity from tracer test data, Ralph M. Parsons Laboratory for Water Resource and Hydrodynamics., Rep. 320. Massachusetts Institute of Technology, Cambridge, MA, 1989, pp. 107.
[9] Moench, A. F., Convergent radial dispersion: A Laplance transform solution for aquifer tracer testing, Water Resour. Res., vol. 25, no.3, 1989, pp. 439-447.
[10] 陳瑞昇,徑向收斂流場追蹤劑試驗延散效應解析,博士論文,國立台灣大學農業工程研究所,台北,1997。
[11] Leij, F. J., and J. H. Dane, The effect of transverse dispersion on solute transport in soils. J. Hydrol., vol. 122, 1991, pp. 407-422.
[12] Kapoor, V., and L. W. Gelhar, Transport in three-dimensionally heterpgeneous aquifers: 1. Dynamics of concentration fluctuations, Water Resour. Res., vol. 30, no. 6, 1994, pp. 1775-1778.
[13] Kapoor, V., and P. K. Kitanidis, Concentration fluctuations and dilution in aquifer, Water Resour. Res., vol. 34, no. 5, 1998, pp. 1181-1193.
[14] Fiori, A., and G. Dagan, Concentration fluctuations in aquifer transport: A rigorous first-order solution and applications, J. Contam. Hydrol., vol. 45, no. 1, 2000, pp. 139-163.
[15] Chen, J. S., C. S. Chen, H. S. Gau, and C. W. Liu, A two-well method to evaluate transverse dispersivity for tracer tests in radially convergent flow field, J. Hydrol., vol. 223, 1999, pp. 175-197.
[16] Chen, J. S., C. W. Liu, C. S. Chen, and C. M. Liao, Effect of well bore mixing volume on non-axisymmetrical transport in a convergent tracer test, J. Hydrol., vol. 277, 2003, pp. 61-73.
[17] Balkhair, K. S., Aquifer parameters determination for large diameter wells using neural network approach, J. Hydrol., vol. 265, 2002, pp. 118-128.
[18] Papadopulos, I. S., Drawdown distribution around a large diameter well, National Symposium on Groundwater Hydrology, San Francisco, CA November, 1967, pp. 157-168.
[19] Samani, N., M. Gohari-Moghadam, and A. A. Safavi, A simple neural network model for the determination of aquifer parameters, J. Hydrol., vol. 340, 2007, pp.1-11.
[20] Lin, G. F., and G. R. Chen, An improved neural network approach to the determination of aquifer parameters, J. Hydrol., vol. 316, 2006, pp. 281-289.
[21] Rogers, L. L., and F. U. Dowla, Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling, Water Resour. Res., vol. 30, no. 2, 1994, pp. 457-481.
[22] Voss, C. I., A finite-element simulation model for saturated-un saturated, fluid-density-dependent groundwater flow with energy transport or chemically-reactive single-species solute transport, U. S. Geol. Surv. Water Resour. Invest., 1984, 409, pp. 84-4369,
[23] Akin, S., Tracer model indentification using artificial neural networks, Water Resour. Res., vol.41, 2005, W10421, doi: 10.1029/2004WR003838.
[24] Yoon, H. S., Y. J. Hyun, and K. K. Lee, Forecasting solute breakthrough curve through the unsaturated zone using artificial neural networks, J. Hydrol., vol. 335(1-2), 2007, pp. 68-77.
[25] Shieh, H. Y., J. S. Chen, C. N. Lin, W. K. Wang, and C. W. Liu, Development of an artificial neural network model for determination of longitudinal and transverse dispersivities in a convergent flow tracer test, J. Hydrol., vol. 391, 2010, pp. 367-376.
[26] Chen, J. S., C. W. Liu, H. T. Hsu, and C. M. Liao, A Laplace transform power series solution for solute transport in a convergent flow field with scale-dependent dispersion, Water Resour. Res., vol. 39, no.8, 2003, doi:10.1029/2003WR002299.
[27] De Hoog, F. R., J. H. Knight, and A. N. Stokes, An improved method for numerical inversion of Laplace transforms, SIAM J. Sci. Stat. Comput., 3(3), 1982, pp. 357-366.
[28] Crump, K. S., Numerical inversion of Laplace transforms using a Fourier Series approximation. J. Assoc. Comput. Mach., 23(1), 1976, pp. 89-96.
[29] Amos, D. E., A portable package for Bessel functions of a complex argument and nonnegative order, Algorithm 644, ACM Trans. Math. Software, 12(4), pp. 265-273.
[30] 葉怡成,類神經網路模式應用與實作第七版,台北:儒林圖書有限公司,2000。
[31] 張斐章,張麗秋,類神經網路,台北:臺灣東華書局股份有限公司,2005。
[32] Li, S.G. and Q. Liu, Software News - "Interactive Ground Water (IGW)", Environmental Modeling and Software. 21(3), 2006.
[33] Schwartz, F. W., and H. Zhang, Fundamentals of Ground Water, John Wiley & Sons, Inc, 2003.
[34] Bear, J., Hydraulics of Groundwater, New York: McGraw-Hill Inc, 1979.