跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林仁豪
JEN-HAO LIN
論文名稱: 商用AA5083-O鋁合金之預沖壓輔助快塑成型
Stamping Assisted Quick Plastic Forming of AA5083-O Aluminum Alloy
指導教授: 李雄
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 69
中文關鍵詞: 快塑成型預沖壓輔助AA5083-O鋁合金金屬手機外殼
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般傳統的超塑成型製程,由於成型所需的時間過長,導致不符合經濟上的效益,為了尋求更好的製程方法來解決此問題,因此本論文提出針對快塑成型(Quick Plastic Forming, QPF)的製程,並且加上預沖壓輔助預成型應用於金屬手機外殼成型的構想進行探討,預期能藉由此製程更為縮短所需要的時間,並且突破成為更符合經濟較益的製程方法。
    本研究採用了一般的商用 AA5083-O 鋁合金快塑成型吹製手機殼,來探討快塑吹製成型,並加入預沖壓輔助吹製與一般無加上預沖壓輔助的快塑成型製程能力分析比較,分析是否更具有製作手機殼上的優勢。
    研究結果顯示出有使用預沖壓輔助的快塑成型,因為已預沖壓出一個接近成品的形狀,再進行吹製,更能夠節省所需的時間,且不需階梯式的吹製氣壓,即可吹出我們所需的成品,比一般無加上預沖壓輔助的快塑成型在時間上又更為優化。


    In general, the conventional superplastic molding process, because the molding takes too long, leads to non-economic benefits, and in order to find a better process method to solve this problem, this paper proposes for Quick Plastic Forming (Quick Plastic Forming, QPF) 's process, coupled with the idea of pre-punching-assisted preforming for metal phone casing molding, is expected to shorten the time required for this process and break through to become a more economical process.
    This study uses general commercial AA5083 -O Aluminum quick phone shell molding blown to blown molded plastic Fast explore, compare and analyzethe pre-stamped added auxiliary blowing plus pre-press and generally no faster assisted molding process capability, making phone analyzes whether more on the edge of the shell.
    The results of the study show that there is a rapid plastic forming using pre-punching, because a shape close to the finished product has been pre-punched, and then blown, which saves the time required and does not require a stepped blowing pressure. Blowing out the finished product we need is more time-optimized than the fast plastic molding without pre-punching aid.

    摘要 ii Abstract vi 致謝 vii 目錄 viii 圖目錄 xi 表目錄 xiv 符號說明 xv 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 理論及文獻回顧 3 2-1 超塑及快塑成型概論 3 2-1-1 超塑成型(SPF) 3 2-1-2 快塑成型【6】 6 2-2 超塑成型與快塑成型比較【7】 7 2-3 成型機制 8 2-4 成型條件 10 2-5 製程能力分析【11】 11 2-5-1 製程準確度 11 2-5-2 製程精密度 12 2-5-3 製程能力指數 13 2-6 通用公差 14 2-7 標準公差等級 15 第三章 研究計畫與設備 16 3-1 實驗材料與設備【13】 16 3-2 實驗流程 23 3-3 預沖壓快速成型流程 24 3-4 預沖頭與上模結合機構 28 3-5 實驗計畫 29 3-5-1 微觀結構分析 29 3-5-2 硬度試驗分析 31 3-5-3 尋求最佳的吹製氣壓 31 3-5-4 尋求最佳的吹氣時間 31 3-5-5 成型鈑片尺寸量測 31 3-5-6 預沖頭輔助吹製的厚度分析 32 3-5-7 有無預沖頭輔助吹製成型厚度分析 32 3-5-8 有無預沖頭輔助吹製邊角成型度分析 32 3-5-9 手機外殼輪廓分析 33 第四章 結果與討論 34 4-1 微觀結構分析結果 34 4-2 比較最佳吹氣時間及氣壓結果 35 4-3 比較材料成型前後之硬度結果 36 4-4 製程能力分析結果 37 4-5 吹製結果尺寸比較 39 4-6 預沖頭輔助吹製的厚度分佈 40 4-7 比較有無預沖頭輔助吹製的厚度分佈 45 4-8 比較有無預沖頭輔助吹製的邊角成型度 48 4-9 手機外殼輪廓分佈 49 第五章 結論 50 參考文獻 52

    【1】 A. K. Mukherjee and R. S. Mishra, “Superplasticity”, Encyclopedia of Materials: Science and Technology (Second Edition), pp.8977-8981, 2001.
    【2】 K. Higashi, M. Mabuchi and T.G. Langdon, High-Strain-Rate Superplasticity in Metallic Materials and the Potential for Ceramic Materials, ISIJ International, Vol.36(1996), pp.1423-1438.
    【3】 F. Yang and W. Yang, Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions, Scripta Materialia, 2009, 61, pp.919-922.
    【4】 C. M. Hu, C. M. Lai, P. W. Kao, N. J. Ho, J. C. Huang, “Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing”, Materials Characterization, Vol 61, pp.1043-1053, 2010.
    【5】 R. Verma, A. K. Ghosh, S. Kim, C. Kim, “Grain refinement and superplasticity in 5083 Al”, Materials Science and Engineering: A, Vol 191, pp.143-150, 1995.
    【6】 J. Carpenter and M. T. Smith, “Quick Plastic Forming of Aluminum Sheet Metal”, Energy Efficiency and Renewable Energy, 2005.
    【7】 P. E. Krajewski and J. G. Schroth, Superplastic Forming of Advanced Metallic Materials: Methods and Applications, Woodhead Publishing Limited.,2011.
    【8】 孫稟厚, “鎂合金AZ31細晶薄鈑片拉伸性質與氣壓成形特性研究”, 國立中央大學, 博士論文, pp.21-22, 2011.
    【9】 F. Ozturk, S. Toros, S. Kilic, “Evaluation of tensile properties of 5052 type aluminum-magnesium alloy at warm temperatures”, Archives of Materials Science and Engineering, Vol 34, pp.95-98, 2008.
    【10】 S.J. Hosseinipour , An investigation into hot deformation of aluminum alloy 5083
    【11】 蔡錫錚、賴景義、劉建聖、陳世叡、陳怡呈,精密機械設計,武南圖書出版,初版,2018
    【12】 Geometrical product specifications (GPS)— ISO code system for tolerances on linear sizes Part 1: Basis of tolerances, deviations
    and fits (ISO 286-1:2010)
    【13】 黃信銘,“超塑性5083與非超塑性5083鋁合金鈑片應用於手機殼氣壓成型之研究”, 國立中央大學, 碩士論文, pp.24-25, 2018.
    【14】 S50C 中碳鋼-昇茂金屬股份有限公司
    http://www.sheng-maw.com.tw/productshow.php?id=257

    【15】 Six sigma & levels of sigma processes
    https://www.slideshare.net/mohitsingla/six-sigma-levels-of-sigma-processes
    【16】 Tobias Lienekea,b, Vera Denzera*, Guido A. O. Adama,b, Detmar Zimmera,b “Dimensional tolerances for additive manufacturing:
    Experimental investigation for Fused Deposition Modeling”, Tobias Lienekea,b, Vera Denzera*, Guido A. O. Adama,b, Detmar Zimmera,b
    【17】 R. J. Bhatt, Advanced Approaches in Superplastic Forming-A Case Study
    【18】 楊渝翔,“加壓程序對5083 鋁鎂合金超塑性成形之影響研究”,中華 大學, 碩士論文
    【19】 George Luckey Jr. a,∗, Peter Friedmana, Klaus Weinmannb , Design and experimental validation of a two-stage superplastic forming die
    【20】 Y. Luoa,b,*, S.G. Luckeyb, P.A. Friedmanb, Y. Penga , Development of an advanced superplastic forming process utilizing a mechanical pre-forming operation
    【21】 張暘青, “民航客機機翼前緣整流罩之超塑成形材料研究”, 國立中央大學, 碩士論文, pp.2-3, 2011.

    QR CODE
    :::