跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳郁珊
Yu-Shan Chen
論文名稱: 陀螺儀、磁力計與里程計應用於自走車之定位
Application of gyroscopes, magnetometers and odometer in the positioning of the mobile robot
指導教授: 鍾鴻源
Hung-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 自走車陀螺儀磁力計卡爾曼濾波器
外文關鍵詞: mobile Robot, gyroscope, magnetometer, kalman filter
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在建立精準的相對定位系統,在使用者設定初始位置後,藉由自走車每次動作的距離及方向角推算自走車位置。其中自走車選用iRobot公司出產之可編程機器人(簡稱iRobot),距離資料由iRobot內建里程計取得。經實驗後,發現iRobot內建馬達編碼器會依每次的轉動而累積誤差,且無法一次轉動超過90度。所以本系統加裝意法半導體公司的iNEMO感測模組,取用陀螺儀z軸及磁力計的x、y軸資訊來修正目前自走車的方向角。
    其中角度修正分為三部分,首先經由累加計算及換算求出陀螺儀轉動值,再將取得之磁力計值通過中值濾波器得知兩筆角度資訊;其二討論iNEMO感測模組的誤差特性並將之用模糊規則描述以預測真實角度;最後,用從實驗得知的誤差範圍設計一組卡爾曼濾波器去除非規則性雜訊,得到精準之方向角。為了證實方法的可行性,提出指定位置追蹤法,討論在不同周期加入角度修正(每兩指定位置距離或一段短距離)的差異。其中在每兩指定位置距離週期下,額外在角度修正較準確的模糊補償及卡爾曼濾波後加上立即補償進行比較。
    本文進行三階段實驗,首先進行「轉角實驗」,收集陀螺儀及磁力計之誤差趨勢;接下來進行「角度校正的模擬值分析」,模擬演算法的修正效果;最後進行「指定位置追蹤實驗」,收集其指定路徑、演算路徑及真實路徑的比較,並進行綜合比較探討所有方法的效能及誤差。


    In this thesis, we provide a precise relative positioning system. After the user sets the initial position, positions of a mobile robot are calculated by action of a mobile robot every time including distance and direction. We select iRobot Create® Programmable Robot (called iRobot) to be a mobile robot, and data of distance is obtained by a built-in odometer of iRobot. In experiment, we notice that there is cumulative error of direc-tion each time iRobot rotating by a built-in motor encoder, and it cannot be rotated more than 90 degrees once. Therefore, iNEMO module of STMicroelectronics is installed in this system. The information of z-axis gyroscope and x, y-axis magnetometer are used to correct the current direction of a mobile robot.
    Angle correction is divided into three parts, first we calculate direction with data of gyroscope and magnetometer; second, we discuss the error characteristics of iNEMO module, and describe them by fuzzy rules to predict the real angle; finally, we design a Kalman filter to remove irregular noise, and get the precise direction. In order to confirm the feasibility of methods, we design a specified location of tracing method, and discuss different cycles of angular correction (a distance of two specified location or a short distance). In the cycle of a distance of two specified location, we compare additional immediate compensation after using more accurate angle correction such as fuzzy and Kalman filter.

    摘要 ..................................................... i ABSTRACT ................................................ ii 誌謝 .................................................... iv 目錄 ..................................................... v 圖目錄 ................................................ viii 表目錄 ................................................. xii 符號說明 ................................................ xv 第一章 緒論 ............................................ 1 1-1 研究背景 ........................................ 1 1-2 研究目的 ........................................ 4 1-3 文獻探討 ........................................ 4 1-4 主要成果與貢獻 .................................. 6 1-5 論文架構 ........................................ 8 第二章 硬體與系統架構 .................................. 9 2-1 系統架構 ........................................ 9 2-2 控制端:筆記型電腦............................... 11 2-3 感測端: iNEMO 模組 ............................. 11 2-4 動作端-iRobot 可編程機器人 ....................... 20 第三章 角度校正演算法 ................................. 22 3-1 加權統計 ....................................... 24 3-2 模糊補償 ....................................... 24 3-3 卡爾曼濾波 ..................................... 26 3-4 模糊補償 立即補償 .............................. 32 3-5 卡爾曼濾波 立即補償 ............................ 32 第四章 指定位置追蹤演算法.............................. 34 4-1 每移動兩指定位置距離就進行角度校正 .............. 35 4-2 每移動一段短距離就進行角度校正 .................. 38 第五章 實驗結果 ....................................... 40 5-1 角度校正的模擬值分析 ............................. 40 5-2 角度校正週期為兩指定位置距離的追蹤實驗 ........... 46 5-3 角度校正週期為2cm 的指定位置追蹤 ................. 64 第六章 結論與未來展望 ................................... 85 6-1 結論 ............................................. 85 6-2 未來展望 ......................................... 87 參考文獻 ................................................ 89 附錄一 .................................................. 93 文章發表 ................................................ 94

    [1] Tzuu-Hseng S. Li, Shih-Jie Chang, Wei Tong: “Fuzzy Target Tracking Control of Autonomous Mobile Robots by Using Infrared Sensors”, IEEE Transactions on fuzzy systems, pp. 491 - 501, AUGUST 2004
    [2] Chia-Feng Juang, Yu-Cheng Chang: “Evolutionary-Group-Based Particle-Swarm-Optimized Fuzzy Controller With Applicationto Mobile-Robot Navigation in Unknown Environments”, IEEE Transactions on fuzzy systems, pp. 379 - 392, APRIL 2011
    [3] Byoung-Suk Choi, Joon-Woo Lee, Ju-Jang Lee, Kyoung-Taik Park: “A Hierarchical Algorithm for Indoor Mobile Robot Localization Using RFID Sensor Fusion”, IEEE transactions on industrial elec-tronics, pp. 2226 - 2235, JUNE 2011
    [4] SunS, DeokKwon Kim, JangMyung Lee: “A New Tag Arrange-ment Pattern for a Differential Driving Mobile Robot Based on RFID System”, International Conference on Control, Automation and Systems, pp. 1228 - 1233, OCTOBER 2007
    [5] Mundla Narasimhappa,P.Rangababu,Samrat L.sabat, J.Nayak: “A Modified Sage-Husa Adaptive Kalman filter for denoising Fiber Optic Gyroscope signal”, India Conference (INDICON), Annual IEEE, pp. 1266 - 1271, DECEMBER 2012
    [6] Kosice, Slovakia: “Bayesian filtering techniques: Kalman and ex-tended Kalman filter basics”, Radioelektronika '09. 19th Interna-tional Conference, pp. 119 - 122, APRIL 2009
    [7] Ryo Ogawara, Masahiro Fujii, Yu Watanabe: “A Study on Location Tracking System using Kalman Filter based on Sensor Information”, ISITA, Honolulu, Hawaii, USA, pp. 184 - 188, OCTOBER 2012
    [8] Fr´ed´eric Rivard, Jonathan Bisson, Franc¸ois Michaud, Dominic L´etourneau: “Ultrasonic Relative Positioning for Multi-Robot Systems”, IEEE International Conference on Robotics and Auto-mation, Pasadena, CA, USA, pp. 323 - 328, May 2008
    [9] Alessandro Milano, Attilio Priolo, Andrea Gasparri, Maurizio Di Rocco, Giovanni Ulivi: “An experimental validation of a low-cost indoor relative position localizing system for mobile robotic net-works”, 19th Mediterranean Conference on Control and Automation Aquis Corfu Holiday Palace, Corfu, Greece, pp. 169 - 174, JUNE 2011
    [10] Jaebok Park, Gihwan Cho: “An Improved Mobile Object Tracking Scheme Combining Range-hybrid Localizations and Prediction Mechanisms”, International Conference on Cyber-Enabled Distrib-uted Computing and Knowledge Discovery, pp. 160 - 167, OC-TOBER 2010
    [11] STMicroelectronics, Using LSM303DLH for a tilt compensated electronic compass.
    [12] STMicroelectronics, STM32F103x datasheet.
    [13] STMicroelectronics, L3GD20 datasheet.
    [14] STMicroelectronics, LSM303DLHC datasheet.
    [15] iRobot® Create, OPEN INTERFACE.
    [16] Brecht Kets - Microsoft XNA MVP: Getting started with XNA – First Person Camera, http://www.3dgameprogramming.
    net/2007/07/31/getting-started-with-xna-first-person-camera/
    [17] 李允中,王小璠,蘇木春,初版,模糊理論及其應用,全華科技圖書,臺北市,民國92年。
    [18] 周建佑,「基於L-K演算法及Kinect的動態目標追蹤系統之研究」,國立中央大學電機工程系,碩士論文,民國101年7月。
    [19] 陳依璟,「自走車之路徑規劃與位置追蹤」,國立中央大學電機工程系,碩士論文,民國101年7月。
    [20] 紀文亮,「利用車道和汽車追蹤之智慧型CCD影像駕駛輔助系統」,國立成功大學資訊工程系,碩士論文,民國95年7月。
    [21] Allen Lu Advance: Kalman Filter 簡介。取自http://allenluadvance.blogspot.tw/2009/09/kalman-filter.html
    [22] 草根IT: matlab下面的kalman濾波程序。取自http://www.caogenit.com/caogenxueyuan/yingyongfangxiang/rengongzhineng/1413.html
    [23] 360doc:自主移動機器人定位方法。取自http://www.360doc.com/
    content/10/1029/13/3482759_64989956.shtml
    [24] 維基百科:模糊控制。取自http://zh.wikipedia.org/wiki/%E6%
    A8%A1%E7%B3%8A%E6%8E%A7%E5%88%B6
    [25] 維基百科:卡爾曼濾波。取自http://zh.wikipedia.org/wiki/%E5
    %8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2

    QR CODE
    :::