跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳書玉
Shu-yu Chen
論文名稱: 應用於第五代行動通訊系統之低溫共燒陶瓷多工器設計
Design of Low Temperature Co-fired Ceramic (LTCC) Multiplexers for 5th Generation Mobile Communication Systems
指導教授: 丘增杰
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 低溫共燒陶瓷雙工器三工器多工器LC共振器
外文關鍵詞: Low Temperature Co-fired Ceramic (LTCC), Diplexer, Triplexer, Multiplexer, LC resonator
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  本論文主要提出以LC串並聯共振電路應用於微波頻段的雙工器與三工器,並以低溫共燒陶瓷(Low Temperature Co-fired Ceramic, LTCC)技術來實現微小化的電路以提供第五代行動通訊系統(5th Generation Mobile Communication Systems)的商業使用。
     利用低溫共燒陶瓷的多層特性,使用平板式電容、垂直指叉式電容與垂直螺旋式電感架構以大幅縮小多工器尺寸,且為了增加通帶選擇性,適度增加電容使在濾波器通帶附近增加零點,除了增加通帶選擇性外亦同時使得多工器保有良好的隔離度。
     第一個設計為通帶分別為4G LTE頻段(698 – 2690MHz)及5G Sub-6GHz頻段(3300 – 5850MHz)的雙工器,量測結果可得通帶698 – 2690MHz的穿透損耗最大為0.62 dB,在3300MHz的衰減可達20dB;通帶3300 – 5850MHz的穿透損耗最大為0.76 dB,在2690MHz與10300MHz的衰減可達30dB;兩個通帶間的隔離度皆大於25dB。尺寸為可滿足商用的2.5×2.0×0.65〖mm〗^3。
     第二個設計為通帶分別為4G LTE低頻頻段(500 – 960MHz)、4G LTE高頻頻段(1427 – 2690MHz)及5G Sub-6GHz頻段(3300 – 5850MHz)的三工器。量測結果可得通帶500 – 960MHz的穿透損耗最大為0.65 dB,在1427MHz的衰減可達20dB;通帶1427 – 2690MHz的穿透損耗最大為0.88 dB,在960MHz與3800MHz的衰減量達到30dB;通帶3300 – 5850MHz的穿透損耗最大為1.06 dB,在2690MHz與10300MHz衰減達到20dB;任意兩通帶間的隔離度大於22 dB。尺寸為可滿足商用的2.5×2.0×0.65〖mm〗^3。


    The thesis presents practical designs for compact microwave diplexers and triplexers by using LC resonators. The circuits will be implemented with Low Temperature Co-fired Ceramic (LTCC) substrates to reach the requirement of compact size for the 5th Generation Mobile Communication Systems.
    In multi-layered structures in LTCC substrates, vertical interdigitated capacitor, metal in metal (MIM) capacitor, and vertical helical inductor can be easily implemented. Therefore, compact multiplexers can be achieved, and transmission zeros near passbands can be introduced to enhance selectivity and isolation of the multiplexers.
    The proposed diplexer is operated in two passbands: 698 – 2690MHz for 4G LTE and 3300 – 5850MHz for 5G Sub-6GHz. The measured characteristics in the lower band and upper band are given as follows. Low insertion losses are 0.62 dB and 0.76 dB. The rejection of out band are over 20 dB and 30 dB. The isolation are over 25 dB between two passbands. The return loss is over 18 dB in both passbands. The diplexer design occupies a volume of 2.5×2.0×0.65〖mm〗^3.
    The proposed triplexer is operated in three passbands: 500 – 960MHz for 4G LTE low band, 1427 – 2690MHz for 4G LTE low band, and 3300 – 5850MHz for 5G Sub-6GHz. The measured characteristics in three passbands are described as follows. Low insertion loss is 0.65 dB, 0.88 dB and 1.06 dB in three passbands, respectively. The rejection of out band are over 20 dB, 30 dB and 20 dB. Isolation are over 22 dB between each two passband. Return losses are over 14 dB in all three passbands. The triplexer design occupies a volume of 2.5×2.0×0.65〖mm〗^3.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 章節介紹 6 第二章 低溫共燒陶瓷元件設計 7 2.1 低溫共燒陶瓷技術簡介 7 2.2 微波濾波器簡介與設計方法 9 2.2.1 基本定義 9 2.2.2 柴比雪夫響應 10 2.2.3 微波濾波器簡介 11 2.3 LTCC微波濾波器電路實踐 12 第三章 雙工器設計 15 3.1 雙工器介紹 15 3.2 應用於5G頻段之雙工濾波器 15 3.2.1 雙工器設計規格與電路結構 15 3.2.2 雙工器實作與量測結果 25 3.3 雙工器傳輸零點分析 31 3.4 濾波器製程誤差分析 36 第四章 三工器設計 54 4.1 三工器介紹 54 4.2 應用於5G頻段之三工濾波器 55 4.2.1 三工器設計規格與電路結構 55 4.2.2 三工器實作與量測 63 4.3 三工器傳輸零點分析 69 第五章 總結 74 參考文獻 76

    [1] J.-S. Hong and M.J. Lancaster (2001). Microstrip Filter for RF/Microwave Applications. New York, John Wiley & Sons, Inc.

    [2] J.-S. Hong and M.J. Lancaster, " Compact microwave elliptic function filter using novel microstrip meander open-loop resonators," in Electron. Lett., vol. 32, no. 6, pp. 563-564, Mar. 1996

    [3] G.L. Matthaei, N.O. Fenzi, R.J. Force, and S.M.Rohlfing, "Hairpin-comb filters for HTS and other narrow-band applications," in IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1226-1231, Aug. 1997

    [4] S.-Y. Lee and C.-M. Tsai, " New cross-coupled filter design using improved hairpin resonators," in IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2482-2490, Dec. 2000

    [5] J.-S. Hong and M.J. Lancaster, " Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," in IEEE Trans. Microw. Theory Tech., vol. 44, no. 11, pp. 2099-2109, Nov. 1996

    [6] J.-T. Kuo, M.-J. Maa, P.-H. Lu, " A microstrip elliptic function filter with compact miniaturized hairpin resonators," in IEEE Microw. Guid. Wave Lett., vol. 10, no. 3, pp. 94-95, Mar. 2000

    [7] J.-S. Hong and M.J. Lancaster, " End-coupled microstrip slow-wave resonator filter," in Electron. Lett.., vol. 32, no. 16, pp. 1494-1496, Aug. 1996

    [8] J.-S. Hong and M.J. Lancaster, " Theory and experiment of novel microstrip slow-wave open-loop resonator filters," in IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2358-2365, Dec. 1997

    [9] C.-C. Chen, Y.-R. Chen, and C.-Y. Chang, " Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators," in IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 120-131, Jan. 2003

    [10] J.-S. Hong, H. Shaman and Y.-H. Chun, " Dual-mode microstrip open-loop resonators and filters," in IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1764-1770, Aug. 2007.

    [11] A. Grr, C. Karpuz, M. Akpinar, " A reduced-size dual-mode bandpass filter with capacitively loaded open-loop arms," in IEEE Microw. Wireless Compon. Lett., vol. 13, no. 9, pp. 385-387, Sep. 2003.

    [12] M. Doan, W. Che, and W. Feng, " Novel compact dual-band bandpass filter with multiple transmission zeros and good selectivity," in Proc. International Conference on Microwave and Millineter Wave Technology(ICMMT), 2012, pp. 1-4.

    [13] S. Sun, " A dual-band bandpass filter using a single dual-mode ring resonator," in IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 298-300, Jun. 2011.
    [14] J.-T. Kuo and E. Shih, " Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," in IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1554-1559, May. 2003.

    [15] Y.- P. Zhang and M. Sun, " Dual-band Microstrip Bandpass filter using stepped-impedance resonators with new coupling schemes," in IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3779-3785, Oct. 2006.

    [16] L. Gao, X. Y. Zhang, K. X. Wang, B.-J. Hu, " Miniaturized dual-band bandpass filter using quarter-wavelength stepped-impedance resonators," in Proc. Asia-Pacific Microw. Conf., 2012, pp. 238-240.

    [17] Y.-C. chang, C.-H. Kao, M.-H. Weng, " Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications," in IEEE Microw. Wireless Compon. Lett., vol. 19, no. 12, pp. 780-782, Dec. 2009.
    [18] D. Ahn, J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, T. Itoh, " A design of the low-pass filter using the novel microstrip defected ground structure," in IEEE Trans. Microw. Theory Tech., vol. 49, no. 1, pp. 86-93, Jan. 2001.

    [19] J.-S. Park, J.-S. Yun, D. Ahn, T. Itoh, " A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," in IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2037-2043, Sep. 2002.

    [20] A. A-Rahman, A. R. Ali, S. Amari, and A. Omar, " Compact bandpass filters using defected ground structure (DGS) coupled resonators," in IEEE MTT-S Int. Dig., pp. 1479-1482, Jun 2005.

    [21] C.-H. Tseng, H.-Y. Shao, and A. Omar, " A new dual-band microstrip bandpass filter using net-type resonators," in IEEE Microw.Wireless Compon. Lett., vol. 20, no. 4, pp. 196-198, Apr. 2010.

    [22] L.-K. Yeung and K.-L. Wu, " A compact second-order LTCC bandpass filter with two finite transmission zeros," in IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 337-341, Feb. 2003.

    [23] C.-F. Chang and S.-J. Chung, " Bandpass filter of serial configuration with two finite transmission zeros using LTCC technology," in IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2383-2388, Jul. 2005.

    [24] H.-H. Huang, S.-Y. Xu, and T.-S. Horng, " Fast Prototype-Based Design Approach to Miniaturized LTCC Band-Pass Filters Using Two Reflection Zeros," Proc. of the 36th European Microwave Conference, pp. 545-548, Sep. 2006.

    [25] X.G. Wang, Y. Yun, and I.H. Kang, “Compact Multi-Harmonic Suppression LTCC Bandpass Filter Using Parallel Short-Ended Coupled-Line Structure,” ETRI J., vol. 31, no. 3, pp. 254-262, Jun. 2009.

    [26] C.-W. Tang and H.-C. Hsu, "A multilayered triplexer with low‐temperature cofired ceramic technology," Microwave Opt. Technol Lett., vol. 50, no. 9, pp. 2399-2403, Sep. 2008.

    [27] C.-F. Chen, T.-Y. Huang, C.-P. Chou, R.-B. Wu, "Microstrip diplexers design with common resonator sections for compact size but high isolation", in IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945-1952, May 2006.

    [28] M.-L. Chuang, M.-T. Wu, "Microstrip diplexer design using common T-shaped resonator," in IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 583-585, Nov.2011.

    [29] H.-W. Liu, W.-Y. Xu, Z.-C Zhang, X. Guan, "Compact diplexer using slotline stepped impedance resonator", in IEEE Microw. Compon. Lett., vol. 23, no. 2, pp. 75-77, 2013.

    [30] B. Zhou, D.-Y. Jung, C.-S. Park, and S.-W. Hwang, “Miniaturized Lumped-Element LTCC Filter With Spurious Spikes Suppressed Vertically-Interdigital-Capacitors,” in IEEE Microwave Wireless Comp. Lett., vol. 24, no. 10, pp. 692–694, Oct. 2014.

    [31] A. Yatsenko, D. Orlenko, S. Sakhnenko, G. Sevskiy, and P. Heide, " A Small-Size High-Rejection LTCC Diplexer for WLAN Applications Based on a New Dual-Band Bandpass Filter, " in IEEE MTT-S Int. Microw. Symp. Dig., pp. 2113-2116, Jun. 2007.

    [32] S. Oshima, T. Kaho, Y. Yamaguchi, and T. Nakagawa,, “A multilayer triplexer with wideband passbands for compact wireless LTCC modules,” in Proc. Asia-Pacific Microw. Conf., vol. 3, pp. 1–3, Dec. 2015.

    [33] A. Yatsenko, D. Orlenko, S. Sakhnenko, G. Sevskiy, and P. Heide, " Design of Compact Dual-Band LTCC Second-Order Chebyshev Bandpass Filters Using a Direct Synthesis Approach, " in IEEE Trans. Microw. Theory Tech., vol. 67, no. 4, pp. 1441-1451, Apr. 2019.

    [34] https://www.qualcomm.com/media/documents/files/making- 5g-nr-a-commercial-reality.pdf

    QR CODE
    :::