跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊玟珊
Wen-Shan Chuang
論文名稱: PSO-SA混合搜尋法與其他結構最佳化設計之應用
A PSO-SA Hybrid Searching Algorithm for Optimization of Structures
指導教授: 莊德興
Der-Shin Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 222
中文關鍵詞: 結構輕量化設計模擬退火法粒子群演算法混合搜尋法
外文關鍵詞: optimum structural design, particle swarm optimization, simulated annealing, hybrid search algorithms
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是針對連續變數、離散變數、混合變數之最佳化設計問題,提出兩種以結合粒子群演算法(PSO)與模擬退火法(SA)的混合搜尋法,即PSO–SA–Pg與PSO–SA–Pi。PSO為一隨機搜尋法,具有全域搜尋之能力,其概念簡單且不需調整過多參數。過去研究結果顯示,PSO常在求解最佳化問題的搜尋初期收斂速度較快,但後期搜尋階段隨著所有粒子逐漸往搜尋空間之整體最佳解靠近,因而喪失整體搜尋之多樣性,導致後期收斂速度變慢且容易陷入局部最佳解。為了改善此缺失,本文採用SA演算法作為局部搜尋工具,並將PSO與SA兩種演算法加以整合,期望能使粒子有效地進行全域和局部搜尋,以改善整體的搜尋性能。數個結構輕量化設計問題將分別用來探討其適用性和影響求解品質與效率的相關參數,並藉由設計結果之比較,來探討本文所發展之兩種混合搜尋策略的優缺點。比較結果發現PSO–SA–Pg的求解品質較佳,而PSO–SA–Pi在求解多數混合變數之最佳化問題時,其求解穩定性相對較優。


    This report is devoted to the presentation of two hybrid search
    algorithms, namely PSO–SA–Pg and PSO–SA–Pi, for optimum design of
    structures with continuous, discrete and mixed variables. The PSO
    (Particle Swarm Optimization) is an evolutionary computation technique
    which has ability in performing global search. The main deficiency of
    PSO is that all particles have the tendency to fly to the current best
    solution which may be a local optimum or a solution near local optimum.
    In this case, all particles will move toward to a small region and the
    global exploration ability will be weakened. To overcome the drawback
    of premature convergence of the method and to make the algorithm
    explore the local and global minima thoroughly at the same time, two
    hybrid search algorithms are proposed. More than ten typical structures
    studied in the literature are used to validate the effectiveness of the
    algorithms. The results from comparative studies of the PSO–SA against
    other optimization algorithms are reported to show the solution quality of
    the proposed PSO−SA algorithms. The advantages and drawbacks of the
    two PSO–SA algorithms are also discussed in this report.

    目錄......................................... I 表目錄....................................... IV 圖目錄....................................... VI 第一章 緒論.................................1 1.1 研究動機與目的.......................1 1.2 文獻回顧.............................5 1.2.1 模擬退火法............................5 1.2.2 遺傳演算法............................6 1.2.3 粒子群演算法..........................8 1.3 研究方法與內容.......................11 1.3.1 束制條件的處理........................12 1.3.2 最大速度調整策略......................12 1.3.3 混合搜尋策略..........................13 第二章 PSO及SA演算法........................14 2.1 最佳化問題之數學模式.................14 2.2 粒子群演算法........................ 14 2.2.1 引言................................. 14 2.2.2 PSO基本模式.......................... 16 2.2.3 常數慣性權重......................... 18 2.2.4 線性慣量遞減......................... 19 2.2.5 最大速度限制......................... 20 2.2.6 壓縮因子............................. 21 2.2.7 動態慣量及最大速度遞減............... 21 2.2.8 PSO之演算程序........................ 23 2.3 模擬退火法.......................... 26 2.3.1 引言................................. 26 2.3.2 SA的跳躍機制......................... 27 2.3.3 SA之演算程序......................... 27 第三章 PSO-SA混合搜尋程序................. 30 3.1 引言................................ 30 3.2 束制函數的處理和適應函數............ 31 3.3 PSO-SA混合搜尋法.................... 32 3.3.1 PSO-SA-Pg混合策略.................... 32 3.3.2 PSO-SA-Pi混合策略.................... 36 3.4 模擬PSO-SA局部搜尋過程...............40 3.5 測試算例...............43 3.6 最大速度調整策略...............49 3.6.1 測試比較...............53 3.6.2 小結...............56 第四章 數值算例與參數研究究................................................................57 4.1 測試流程簡介..........................................................................57 4.2 PSO−SA之參數研究................................................................58 4.2.1 10桿平面桁架..............................................................58 4.2.1.1 PSO−SA−Pg參數研究.................................................60 4.2.1.2 PSO−SA−Pi參數研究..................................................68 4.2.1.3 結果比較...................................................................75 4.2.2 18桿平面桁架..............................................................78 4.2.2.1 PSO−SA−Pg參數研究.................................................80 4.2.2.2 PSO−SA−Pi參數研究..................................................87 4.2.2.3 結果比較...................................................................93 4.3 其他算例設計結果...................................................................98 4.3.1 類型(一):52桿空間桁架(I)............................................98 4.3.2 類型(二):25桿空間桁架(I)..........................................107 4.3.3 類型(二):160桿空間桁架...........................................113 4.3.4 類型(二):雙跨五層平面構架.......................................118 4.3.5 類型(二):單跨八層平面構架.......................................123 4.3.6 類型(三):Pressure Vessel Design...................................127 4.3.7 類型(三):25桿空間桁架(II)........................................131 4.3.8 類型(三):25桿空間桁架(III).......................................137 4.3.9 類型(三):39桿空間桁架............................................143 4.3.10 類型(三):52桿空間桁架(II)........................................150 4.3.11 類型(四):Coil Spring Design........................................160 第五章 結論與建議...........................................................................166 5.1 結論與建議...........................................................................166 5.2 未來研究方向........................................................................169 參考文獻...............................................................................................170

    [1] Pedersen, P., “Optimal Joint Positions for Space Trusses,” Journal of the Structural Division, ASCE, Vol. 99, No. 12, pp. 2459

    QR CODE
    :::