跳到主要內容

簡易檢索 / 詳目顯示

研究生: 韓鈞博
Chun-Po Han
論文名稱: 基於點雲建模之大型物件體積估測方法
Large object volume estimation method based on point cloud modeling
指導教授: 王文俊
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 75
中文關鍵詞: 體積估算RealityCapture自適應膨脹RANSACPoisson重建DBSCAN影像切片
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在某些情況和特定目的下,我們需要估算大型物件的體積,例如建築物、雕像、飛機等等。本文提出一套具備高度彈性且成本效益高的方法,使用來自低成本無人機拍攝的空拍影像、智慧型手機拍攝影像以及Google Earth 三維街景資料等多種來源的影像,搭配 RealityCapture 建立的高解析度點雲模型,實現對大型物件的體積估算。
    本方法整合多階段的點雲處理與影像分析流程。首先,透過空間裁切及降噪技術清除背景與非目標物資訊,並使用 RANSAC 擬合地面平面並進行法向量校正,使點雲地面法向量與世界座標 Z 軸對齊,提升切片分析的準確性與一致性。接著,利用 DBSCAN 聚類演算法以及 KDTree 半徑檢查,去除地面與浮動雜訊點。為進一步提升低密度區域的完整性,本研究導入 Poisson 重建與輪廓補點技術,補足點雲稀疏區域,使整體點雲更為完整、連貫。在體積估算過程中,我們將點雲依 Z 軸高度切分為數個切片,並將每個切片投影至 XY 平面產生二值影像。為解決點雲密度不均所導致的輪廓破碎問題,本文引入自適應膨脹演算法,針對每個像素區域的局部密度動態調整膨脹核大小,並結合侵蝕處理修補輪廓與去除雜點。處理後的影像使用 OpenCV 擷取輪廓,計算出每層的切片面積,再乘以切片厚度並逐層累加,最後估算完整體積。此外,本文亦提供體積估算過程中的視覺化展示,包含每層切片的三維點雲與對應輪廓影像,有助於觀察估算細節與分析異常切片。
    實驗部分,我們選擇多個真實世界大型建物作為驗證對象,包括中正紀念堂、陶朱隱園以及內湖區住宅,分別涵蓋不同複雜度與形體特徵的結構。將實際體積與估算體積進行誤差比對後,驗證本方法在多種資料來源與不同點雲品質條件下,皆展現出穩定且高準確度的體積估算能力。整體誤差控制在可接受範圍內,顯示本方法具有良好的適應性,也適用於資源有限、無須昂貴設備的應用場景。


    In certain situations and for specific purposes, it is necessary to estimate the volume of large objects, such as buildings, sculptures, aircraft, and so forth. This study proposes a highly flexible and cost-effective method that utilizes images from various low-cost sources—including aerial photographs taken by unmanned aerial vehicles (UAVs), images captured by smartphones, and 3D Street View data from Google Earth—combined with RealityCapture to construct high-resolution point cloud models for estimating the volume of large objects.
    The proposed approach integrates a multi-stage workflow encompassing point cloud processing and image analysis. First, background and non-target information are removed through spatial cropping and noise reduction techniques, including plane fitting using RANSAC and normal vector correction to align the point cloud ground normal with the Z-axis of the world coordinate system, thus enhancing the accuracy and consistency of slice analysis. Subsequently, DBSCAN clustering and KDTree radius checks are employed to eliminate ground and floating noise points. To further improve the integrity of low-density regions, Poisson reconstruction and point completion techniques are introduced to fill sparse areas of the point cloud, making the overall data completer and more continuous. During the volume estimation process, the point cloud is sliced along the Z-axis into several layers, and each slice is projected onto the XY plane to generate binary images. To address issues of fragmented contours caused by uneven point cloud density, this paper introduces an adaptive dilation algorithm that dynamically adjusts the size of the dilation kernel based on the local density around each pixel region and combines it with erosion operations to repair contours and remove noise. The processed images are then used with OpenCV to extract contours, calculate the area of each slice, and multiply it by the slice thickness to cumulatively estimate the overall volume. Furthermore, the study provides visualization during the volume estimation process, including 3D point clouds and corresponding contour images for each slice, facilitating observation of estimation details and analysis of abnormal slices.
    In the experimental section, several large real-world buildings are selected for validation, including Chiang Kai-shek Memorial Hall, Agora Garden, and residential buildings in the Neihu District, covering structures of varying complexity and geometrical characteristics. By comparing the estimated volumes with actual measurements, this method demonstrates stable and high-accuracy volume estimation capabilities across various data sources and point cloud quality conditions. The overall estimation errors are maintained within acceptable limits, indicating the method’s adaptability and suitability for applications in resource-constrained environments without the need for expensive equipment.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文目標 4 1.4 論文架構 5 第二章 系統架構與軟硬體介紹 6 2.1 系統架構 6 2.2 硬體架構 7 2.2.1 筆記型電腦規格介紹 7 2.2.2 手機鏡頭規格 7 2.2.3 空拍機規格 8 2.3 軟體介紹 9 2.3.1 Python環境與套件 9 2.3.2 RealityCapture 10 2.3.3 Google Earth 11 第三章 點雲前處理 12 3.1 目標物件影像拍攝 12 3.1.1 小型物件拍攝 12 3.1.2 大型物件拍攝 12 3.2 點雲地面法向量校正與建立水平面基準 13 3.2.1 裁切點雲區域與降低體素 13 3.2.2 RANSAC演算法平面擬合 14 3.2.3 校正點雲地面法向量 15 3.2.4 建立水平面基準 17 3.3 點雲分群 17 3.3.1 基於平面密度過濾點雲 18 3.3.2 DBSCAN分群 19 3.4 點雲雜訊濾除 21 3.4.1 移除地面雜訊 22 3.4.2 移除離群雜訊 24 3.5 點雲表面重建 25 3.5.1 Poisson重建表面 25 3.5.2 使用物件輪廓重建表面 28 第四章 體積分析方法 31 4.1 影像處理 31 4.1.1 點雲資料轉成影像資料 31 4.1.2 調整膨脹核大小演算法 33 4.1.3 調整侵蝕核大小演算法 35 4.2 計算總體積 38 4.2.1 定義面積換算因子 38 4.2.2 換算估測面積 39 4.2.3 計算完整體積 40 第五章 實驗結果與分析 41 5.1 紙箱堆1 41 5.2 紙箱堆2 43 5.3 木雕 45 5.4 坦克車 47 5.5 內湖民宅 49 5.6 陶朱隱園 51 5.7 中正紀念堂 54 第六章 結論及未來展望 57 6.1 結論 57 6.2 未來展望 57 參考文獻 59

    [1] M. A. Tamin, N. Darwin, Z. Majid, M. F. Mohd Ariff, K. M. Idris and A. Manan Samad, "Volume Estimation of Stockpile Using Unmanned Aerial Vehicle," 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 2019, pp. 49-54, doi: 10.1109/ICCSCE47578.2019.9068543.
    [2] P. Zhang et al., "3D Urban Buildings Extraction Based on Airborne LiDAR and Photogrammetric Point Cloud Fusion According to U-Net Deep Learning Model Segmentation," in IEEE Access, vol. 10, pp. 20889-20897, 2022, doi: 10.1109/ACCESS.2022.3152744.
    [3] G. Kong, C. Zhang and H. Fan, "Large-Scale 3-D Building Reconstruction in LoD2 from ALS Point Clouds," in IEEE Geoscience and Remote Sensing Letters, vol. 22, pp. 1-5, 2025, Art no. 6500305, doi: 10.1109/LGRS.2024.3514514.
    [4] G. Gabara and P. Sawicki, "Accuracy Study of Close Range 3D Object Reconstruction Based on Point Clouds," 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 2017, pp. 25-29, doi: 10.1109/BGC.Geomatics.2017.62.
    [5] X. Zhang et al., "Research on Object Panoramic 3D Point Cloud Reconstruction System Based on Structure from Motion," in IEEE Access, vol. 10, pp. 110064-110075, 2022, doi: 10.1109/ACCESS.2022.3213815.
    [6] E. F. Berra and M. V. Peppa, "Advances and Challenges of UAV SFM MVS Photogrammetry and Remote Sensing: Short Review," 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 2020, pp. 533-538, doi: 10.1109/LAGIRS48042.2020.9285975.
    [7] M. Jancosek, A. Shekhovtsov and T. Pajdla, "Scalable Multi-View Stereo," 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 2009, pp. 1526-1533, doi: 10.1109/ICCVW.2009.5457432.
    [8] A. A. Aboaba, S. A. Hameed, O. O. Khalifa, A. H. Abdalla, R. H. Harun and N. R. M. Zain, "Iterative Spatial Sectoring Algorithm: A Computer Based Approach to Determining Area of Irregular Closed Space and Tumor Volume," 2011 National Postgraduate Conference, Perak, Malaysia, 2011, pp. 1-4, doi: 10.1109/NatPC.2011.6136298.
    [9] M Kazhdan, "Poisson Surface Reconstruction", Eurographics Symposium on Geometry Processing, pp. 61-70, 2006.
    [10] E. B. Putman and S. C. Popescu, "Automated Estimation of Standing Dead Tree Volume Using Voxelized Terrestrial Lidar Data," in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 11, pp. 6484-6503, Nov. 2018, doi: 10.1109/TGRS.2018.2839088.
    [11] W. Hongyan, Y. Ning, C. Hui, L. Weibin and B. Ahmad, "Volume Calculation for Power Equipment Point Cloud Based on Concave Hull Slice Method," 2021 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2021, pp. 302-306, doi: 10.1109/ICPRE52634.2021.9635231.
    [12] W. -C. Chang, C. -H. Wu, Y. -H. Tsai and W. -Y. Chiu, "Object Volume Estimation Based on 3D Point Cloud," 2017 International Automatic Control Conference (CACS), Pingtung, Taiwan, 2017, pp. 1-5, doi: 10.1109/CACS.2017.8284244.
    [13] Z. Cai, C. Jin, J. Xu and T. Yang, "Measurement of Potato Volume with Laser Triangulation and Three-Dimensional Reconstruction," in IEEE Access, vol. 8, pp. 176565-176574, 2020, doi: 10.1109/ACCESS.2020.3027154.
    [14] T. Suzuki, K. Futatsuishi and K. Kobayashi, "Food Volume Estimation Using 3D Shape Approximation for Medication Management Support," 2018 3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Singapore, 2018, pp. 107-111, doi: 10.1109/ACIRS.2018.8467253.
    [15] D. Deng, "DBSCAN Clustering Algorithm Based on Density," 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 2020, pp. 949-953, doi: 10.1109/IFEEA51475.2020.00199.
    [16] M. A. Fischler and R. C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography," Commun. ACM, vol. 24, no. 6, pp. 381-395, 1981.
    [17] P. Pérez-Lantero, "Area and Perimeter of the Convex Hull of Stochastic Points," in The Computer Journal, vol. 59, no. 8, pp. 1144-1154, Aug. 2016, doi: 10.1093/comjnl/bxv124.
    [18] X. Wei, J. Li, B. Long, X. Hu, H. Wu and H. Li, "Method for Vortex Shape Retrieval and Area Calculation Based on Convex Hull Algorithm," in IEEE Access, vol. 9, pp. 2706-2714, 2021, doi: 10.1109/ACCESS.2020.3046651.
    [19] H. Edelsbrunner, D. G. Kirkpatrick and R. Seidel, "On the Shape of a Set of Points in the Plane," IEEE Trans. Inf. Theory, vol. IT-29, no. 4, pp. 551-559, Jul. 1983.
    [20] H. Edelsbrunner and E. P. Mucke, "Three-Dimensional Alpha-Shapes," ACM Transactions on Graphics, vol. 13, pp. 43-72, Jan 1994.
    [21] A. Wibowo, H. B. Santoso, C. A. Rachmat and R. Delima, "Mapping and Grouping of Farm Land with Graham Scan Algorithm on Convex Hull Method," 2019 International Conference on Sustainable Engineering and Creative Computing (ICSECC), Bandung, Indonesia, 2019, pp. 121-126, doi: 10.1109/ICSECC.2019.8907143.
    [22] G. Li, Y. -l. Hao and W. Zu, "A Modified Constrained Delaunay Triangulation Algorithm Based on Extracted Boundary Characteristic Points," 2007 International Conference on Mechatronics and Automation, Harbin, China, 2007, pp. 873-878, doi: 10.1109/ICMA.2007.4303660.
    [23] Yunfan Li, Guang Gao, Bo Cao, Liang Zhong and Yao Liu, "Building Boundaries Extraction from Point Clouds Using Dual-Threshold Alpha Shapes," 2015 23rd International Conference on Geoinformatics, Wuhan, 2015, pp. 1-4, doi: 10.1109/GEOINFORMATICS.2015.7378619.
    [24] R. C. dos Santos, M. Galo and A. C. Carrilho, "Extraction of Building Roof Boundaries from LiDAR Data Using an Adaptive Alpha-Shape Algorithm," in IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 8, pp. 1289-1293, Aug. 2019, doi: 10.1109/LGRS.2019.2894098.
    [25] [Online] Available:https://rog.asus.com/laptops/rog-strix/2021-rog-strix-g17-series/spec/, 2025年6月
    [26] [Online] Available:https://www.dji.com/tw/support/product/mini-2, 2025年6月
    [27] [Online] Available:https://www.anaconda.com/, 2025年6月
    [28] [Online] Available:https://www.capturingreality.com/assets/Documents/RealityCapture-DataSheet.pdf, 2025年6月
    [29] [Online] Available:https://www.capturingreality.com/, 2025年6月
    [30] 邑相聯合建築師事務所
    [31] [Online] Available:https://img2.gov.taipei/F100/F100.aspx, 2025年6月

    QR CODE
    :::