| 研究生: |
吳仕昕 ShiH-Hsin Wu |
|---|---|
| 論文名稱: |
高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究 Fabrication of guallium nitride microring resonators by high-power impulsed magnetron sputtering |
| 指導教授: |
王培勳
Pei-Hsun Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 氮化鎵 、環形共振腔 、高功率脈衝磁控濺鍍 、波導 、矽光子 |
| 外文關鍵詞: | gallium nitride, microring resonator, high-power impulsed magnetron sputtering, waveguide, silicon photonics |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為 了 彌 補 現 今 互 補 式 金 屬 氧 化 物 半 導 體 (Complementary Metal Oxide
Semiconductor, CMOS)製程的熱損耗、傳輸距離與成本等問題,矽光子技術逐漸
蓬勃發展,其有著傳輸損耗低與高頻寬的特性,且與 CMOS 製程有良好的相容
性,矽光子整合之光積體電路在光傳輸、生物感測、量子光學與非線性光學的應
用上都有很大的潛力,矽光子常見使用的波段為 1310 nm 與 1550 nm,因為矽基
材料在此兩波段有著較少的吸收,對於光波導的傳輸有較少的損耗,但由於矽波
導的能帶小,容易產生雙光子吸收,對於非線性光學的應用有限,因此許多研究
嘗試開發其他材料作為波導媒介,本論文使用氮化鎵作為波導導光層材料,氮化
鎵由於有著非對稱的晶格排列,因此同時存在 χ
(2)與 χ
(3)非線性,更容易產生二倍
頻與頻率梳,傳統上沉積氮化鎵的方式為有機金屬化學氣相沉積法(MOCVD),
若沉積在有晶格的矽基材料,會因為晶格不配對的關係而成長困難,若基板為無
晶格的矽基材料,也難以長出高品質且有晶格的氮化鎵,因此本論文使用高功率
脈衝磁控濺射(HiPIMS)的方式,在室溫的沉積環境也可以得到高品質的氮化鎵薄
膜。
首先介紹波導的基本理論與成立條件,從 Snell’s law 得知,導光層必須為光
密介質才能形成波導,本論文使用導光層材料為氮化鎵與氮化矽,再介紹環形共
振腔偶合條件、品質因子與群速度色散等特性,若想達到臨界耦合需要較低損耗
的環形波導與較小的間隙以減少消逝波的耦合損耗。再以時域有限差分法與有限
元素法分別模擬氮化鎵與氮化矽環形共振腔之不同間隙大小的耦合效率、不同波
導寬度的模態數、不同絕緣層厚度之場型分布與群速度色散,由於氮化鎵的折射
率較大,需要較小的間隙大小才能達到臨界耦合,而也因為較大的折射率,需要
的絕緣層厚度較小。
再來介紹製程,以 HiPIMS 氮化鎵與 LPCVD 氮化矽作為波導導光層材料,
由於需要小於 300 nm 的間隙才能達到臨界耦合,故使用電子束微影系統,傳統
方式將圖案分割成較小的曝光邊界依序曝光,但邊界接合問題會造成波導傳輸的
損耗,本論文使用(Fixed- beam moving stage, FBMS)的模式,固定電子束改為移
動採台的方式,可沿著波導曝光,避免邊界接合的問題,經曝光方式優化後,在
空氣包覆層的情況下,氮化鎵波導傳輸損耗從 57 dB,降低到 32 dB,經過沉積
二氧化矽包覆層後,傳輸損耗降低到 16 dB,且氮化鎵的品質因子達到 4×10^4,
本論文為第一個實現在二氧化矽上沉積氮化鎵並做出品質因子達到 10^4的環形共
振腔。
本論文使用 HiPIMS 沉積氮化鎵,在晶格不配對的情況下,為氮化鎵元件提
供一個更多元的沉積方式,藉由此技術,使氮化鎵能與 CMOS 製程整合,是非
常有潛力的技術。
In order to address the issues of thermal loss, transmission distance, and cost in
the current technologies by Complementary Metal Oxide Semiconductor (CMOS)
processes, silicon photonics technology has been gradually developing. It features low
transmission loss, high bandwidth, and good compatibility with CMOS processes.
Silicon photonics integrated optoelectronic circuits have great potential in applications
such as optical communication, biosensing, quantum optics, and nonlinear optics. The
commonly used wavelength range for silicon photonics is 1310 nm and 1550 nm, as
silicon-based materials exhibit less absorption in these ranges, resulting in lower losses
for optical waveguides. However, due to the small bandgap of silicon waveguides, they
are prone to two-photon absorption, limiting their applications in nonlinear optics.
Therefore, research efforts have focused on developing alternative materials as
waveguide media. This study utilizes gallium nitride (GaN) and silicon nitride (SiNx)
as waveguide core materials. GaN possesses asymmetric crystal lattice arrangement,
allowing for both χ(2) and χ(3) nonlinearities, making it more suitable for second
harmonic generation and frequency comb generation. Traditionally, GaN is deposited
using Metal Organic Chemical Vapor Deposition (MOCVD). But due to the lattice
mismatch between GaN and silicon-based materials, MOCVD cannot be used for
deposition of high-quality thin film on silicon or silicon oxide substrates. Hence, this
study employs High-Power Impulse Magnetron Sputtering (HiPIMS), which allows for
the deposition of high-quality GaN films at room temperature.
Firstly, the basic theory and conditions for waveguides are introduced. According
to Snell's law, the core must be a high refractive index material to form a waveguide.
In this study, GaN based waveguide resonators are introduced. The coupling conditions,
quality factor, and group velocity dispersion of ring resonators are then explained. To
achieve critical coupling, it is necessary to have low-loss ring waveguides and enhance
coupling strength by minimizing the gap size. The coupling efficiency, mode numbers
of different waveguide widths, field distribution, and group velocity dispersion of GaN
and SiNx microring resonators with varying gap sizes are simulated using the FiniteDifference Time-Domain (FDTD) method and Finite Element Method (FEM). Due to
the higher refractive index of GaN, a smaller gap size is required to achieve critical
coupling. Additionally, a thinner insulating layer can be adopted due to the larger
refractive index of GaN.
Next, the fabrication process is introduced. GaN deposited using HiPIMS and
silicon nitride deposited using Low-Pressure Chemical Vapor Deposition (LPCVD) are
utilized as waveguide core materials. Since a gap size smaller than 300 nm is required
for critical coupling, an electron beam lithography system is used. Instead of the
traditional method of dividing the patterns into smaller writefields and sequentially
exposing them, this study employs the Fixed-Beam Moving Stage (FBMS) mode,
where the electron beam is fixed with moving stage for patterning, allowing for
exposure along the waveguide and avoiding stitching error issues that cause
transmission losses. After optimizing the exposure process, the transmission loss of
GaN waveguides is reduced from 57 dB to 32 dB with air cladding. With the deposition
of a silicon dioxide as the cladding layer, the transmission loss is further reduced to 16
dB, and the quality factor of GaN reaches 4×10^4
. This study is the first to achieve the
deposition of GaN on silicon dioxide and demonstrate a quality factor of 10^4
in a
microring resonator.
By utilizing HiPIMS for GaN deposition, this study provides a more versatile
deposition method for GaN devices onto different substrates. This technology enables
the integration of GaN with CMOS processes and holds great potential in realizing
photonic devices.
1. Radamson, H.H., et al., The challenges of advanced CMOS process from 2D to
3D. Applied Sciences, 2017. 7(10): p. 1047.
2. Tang, M., et al., Integration of III-V lasers on Si for Si photonics. Progress in
Quantum Electronics, 2019. 66: p. 1-18.
3. Jia, B.W., et al., Monolithic integration of InSb photodetector on silicon for midinfrared silicon photonics. ACS Photonics, 2018. 5(4): p. 1512-1520.
4. Witzens, J., High-speed silicon photonics modulators. Proceedings of the IEEE,
2018. 106(12): p. 2158-2182.
5. Liu, D., et al., Silicon photonic filters. Microwave and Optical Technology
Letters, 2021. 63(9): p. 2252-2268.
6. Velha, P., et al., Wide-band polarization controller for Si photonic integrated
circuits. Optics letters, 2016. 41(24): p. 5656-5659.
7. Kiyat, I., A. Aydinli, and N. Dagli, A compact silicon-on-insulator polarization
splitter. IEEE photonics technology letters, 2004. 17(1): p. 100-102.
8. Zhu, L., W. Yang, and C. Chang-Hasnain, Very high efficiency optical coupler
for silicon nanophotonic waveguide and single mode optical fiber. Optics
express, 2017. 25(15): p. 18462-18473.
9. Stutius, W. and W. Streifer, Silicon nitride films on silicon for optical
waveguides. Applied Optics, 1977. 16(12): p. 3218-3222.
10. Nagatsuma, T., G. Ducournau, and C.C. Renaud, Advances in terahertz
communications accelerated by photonics. Nature Photonics, 2016. 10(6): p.
371-379.
11. Threm, D., Y. Nazirizadeh, and M. Gerken, Photonic crystal biosensors
towards on‐chip integration. Journal of biophotonics, 2012. 5(8‐9): p. 601-616.
12. Longhi, S., Quantum‐optical analogies using photonic structures. Laser &
Photonics Reviews, 2009. 3(3): p. 243-261.
13. Foster, M.A., et al., Nonlinear optics in photonic nanowires. Optics Express,
2008. 16(2): p. 1300-1320.
14. Gaeta, A.L., M. Lipson, and T.J. Kippenberg, Photonic-chip-based frequency
combs. nature photonics, 2019. 13(3): p. 158-169.
15. Meier, C., et al., Silicon nanoparticles: Absorption, emission, and the nature of
the electronic bandgap. Journal of Applied Physics, 2007. 101(10): p. 103112.
16. Cheng, Q., S. Xu, and K.K. Ostrikov, Controlled-bandgap silicon nitride
nanomaterials: deterministic nitrogenation in high-density plasmas. Journal of
Materials Chemistry, 2010. 20(28): p. 5853-5859.
17. Zheng, Y., et al., Integrated gallium nitride nonlinear photonics. Laser &
Photonics Reviews, 2022. 16(1): p. 2100071.
18. https://thermal.blueeyes.tw/TECH_CMOS-en.php.
19. Shimamura, K., et al., Epitaxial growth of GaN on (1 0 0) β-Ga2O3 substrates
by metalorganic vapor phase epitaxy. Japanese Journal of Applied Physics,
2004. 44(1L): p. L7.
20. Awan, K.M., et al., Fabrication and optical characterization of GaN
waveguides on (− 201)-oriented β-Ga 2 O 3. Optical Materials Express, 2018.
8(1): p. 88-96.
21. Thubthimthong, B., T. Sasaki, and K. Hane, Asymmetrically and Vertically
Coupled Hybrid Si/GaN Microring Resonators for On-Chip Optical
Interconnects. IEEE Photonics Journal, 2015. 7(4): p. 1-11.
22. Nagata, K., et al., Structural analyses of thin SiO2 films formed by thermal
oxidation of atomically flat Si surface by using synchrotron radiation X-ray
characterization. ECS Journal of Solid State Science and Technology, 2015.
4(8): p. N96.
23. Anders, A., Tutorial: Reactive high power impulse magnetron sputtering (RHiPIMS). Journal of Applied Physics, 2017. 121(17): p. 171101.
24. Shirley, J.W., An early experimental determination of Snell's law. American
Journal of Physics, 1951. 19(9): p. 507-508.
25. Ahmad, M. and L.L. Hench, Effect of taper geometries and launch angle on
evanescent wave penetration depth in optical fibers. Biosensors and
Bioelectronics, 2005. 20(7): p. 1312-1319.
26. Xiao, S., et al., Modeling and measurement of losses in silicon-on-insulator
resonators and bends. Optics Express, 2007. 15(17): p. 10553-10561.
27. Feng, S., et al., Silicon photonics: from a microresonator perspective. Laser &
photonics reviews, 2012. 6(2): p. 145-177.
28. Xue, X., et al., Microresonator Kerr frequency combs with high conversion
efficiency. Laser & Photonics Reviews, 2017. 11(1): p. 1600276.
29. Niehusmann, J., et al., Ultrahigh-quality-factor silicon-on-insulator microring
resonator. Optics letters, 2004. 29(24): p. 2861-2863.
30. https://www.fiberoptics4sale.com/blogs/wave-optics/phase-velocity-groupvelocity-and-dispersion.
31. Hong, Y., et al. Dispersion optimization of silicon nitride waveguides for
efficient four-wave mixing. in Photonics. 2021. MDPI.
32. Fujii, S. and T. Tanabe, Dispersion engineering and measurement of whispering
gallery mode microresonator for Kerr frequency comb generation.
Nanophotonics, 2020. 9(5): p. 1087-1104.
33. Wai, P.K.A., et al., Soliton at the zero-group-dispersion wavelength of a singlemodel fiber. Optics letters, 1987. 12(8): p. 628-630.
34. Chang, W., et al., Dissipative soliton resonances in the anomalous dispersion
regime. Physical Review A, 2009. 79(3): p. 033840.
35. Yee, K., Numerical solution of initial boundary value problems involving
Maxwell's equations in isotropic media. IEEE Transactions on antennas and
propagation, 1966. 14(3): p. 302-307.
36. https://en.wikipedia.org/wiki/Finite_element_method
37. Jundt, D.H., Temperature-dependent Sellmeier equation for the index of
refraction, n e, in congruent lithium niobate. Optics letters, 1997. 22(20): p.
1553-1555.
38. Barker Jr, A. and M. Ilegems, Infrared lattice vibrations and free-electron
dispersion in GaN. Physical Review B, 1973. 7(2): p. 743.
39. Kang, Y., Deposition and Characterization of Amorphous GaN Thin Films.
2002, Ohio University.
40. Luke, K., et al., Broadband mid-infrared frequency comb generation in a Si 3
N 4 microresonator. Optics letters, 2015. 40(21): p. 4823-4826.
41. Centini, M., et al., Dispersive properties of finite, one-dimensional photonic
band gap structures: applications to nonlinear quadratic interactions. Physical
Review E, 1999. 60(4): p. 4891.
42. Shon, J.W., et al., Fabrication of full-color InGaN-based light-emitting diodes
on amorphous substrates by pulsed sputtering. Scientific Reports, 2014. 4(1):
p. 5325.
43. Voigt, A., et al. Improved adhesion of novolac and epoxy based resists by
cationic organic materials on critical substrates for high volume patterning
applications. in Advances in Patterning Materials and Processes XXXI. 2014.
SPIE.
44. https://www.microresist.de/en/produkt/ma-n-2400-series/ (man2400)
45. https://in.ncu.edu.tw/~osc/3_1_2.htm
46. https://www.tsri.org.tw/tw/tech/equipment_hsinchu.jsp
47. https://nanofc.web.nycu.edu.tw/
48. Altissimo, M., E-beam lithography for micro-/nanofabrication.
Biomicrofluidics, 2010. 4(2): p. 026503.
49. van de Kraats, A. and R. Murali, Proximity effect in e-beam lithography. Atlanta,
Georgia: Nanotechnoogy Research Center, Georgia Institute of Technoogy,
2005.
50. Balčytis, A., et al. High precision fabrication of antennas and sensors. in Ninth
International Symposium on Precision Engineering Measurement and
Instrumentation. 2015. SPIE.
51. Siew, S.Y., et al., Rib microring resonators in lithium niobate on insulator.
IEEE Photonics Technology Letters, 2015. 28(5): p. 573-576.
52. Bachman, D.T., Femtosecond laser modification of silicon photonic integrated
devices. 2016.