跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳鎮乾
C-C Chen
論文名稱: 中子質化氮化鎵材料之特性研究
Characterization of Neutron Transmutation Doped GaN
指導教授: 紀國鐘
Gou-Chung Chi
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 88
語文別: 中文
論文頁數: 46
中文關鍵詞: 中子質化
外文關鍵詞: neutron transmutation doping, NTD, photoluminescence, Coulomb''s effect
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中子質化比起目前廣泛被使用的離子佈植技術,雖沒有可以植入多種離子的優點,但是因為具有更均勻的摻雜特性,在特定的製程部份,也應用的相當廣泛,是一種極為成熟的商用化技術。
    中子質化在砷化鎵半導體材料的應用方面,則尚在研究階段。本篇論文即針對氮化鎵半導體材料在經過中子質化後的物理性質(尤其是電性、光性)及缺陷結構(defect及complex型態)等方面之物理機制加以分析探討。



    The PL results of neutron transmutation doped GaN show that the band-gap emission disappeared, and a 426nm peak similar to the spectrum of p-type GaN appeared. Hall measurement shows that the electron concentration increases, and the mobility reduces. NTD also induces the increases of GaN resistivity. To compare the difference of damage induced by NTD process, we use proton ion implanted GaN. The defect, damage, and the thermal annealing effect of GaN with NTD process will be discussed.

    Abstract (in Chinese)……………………………………………………I Abstract (in English)…………………………………………………II Table of Contents……………………………………………………III Figure Captions………………………………………………………...V Table Captions……………………………………………………….VI Chapter 1. Introduction and Outline…………………………………..1 Chapter 2. Processing of Neutron Transmutation Doping of GaN…..3 2-1 Wafer Structure…………………………………………….3 2-2 Wafer Cutting and Cleaning………………………………..3 2-3 Neutron Transmutation Doping……………………………4 2-4 Ion Implantation……………………………………………4 2-5 Thermal Annealing………………………………………...5 Chapter 3. Experimental Methods……………………………………..6 3-1 Neutron Transmutation Doping……………………………6 3-2 Ion Implantation……………………………………………7 3-3 Photoluminescence………………………………………...7 3-4 Hall Measurement…………………………………………8 3-5 X-ray Diffraction…………………………………………..9 Chapter 4. Characterizations of Neutron Transmutation Doped GaN………………..10 4-1 Characterizations of as-grown GaN………………………10 4-2 Characterizations of Neutron Transmutation Doped GaN………………….11 4-2-1 Photoluminescence of Neutron Transmutation Doped GaN………………………………………..11 4-2-2 Hall Measurement of Neutron Transmutation Doped GaN……………………………………….13 4-2-3 X-ray Diffraction of Neutron Transmutation Doped GaN………………………………….……14 4-3 Characterizations of Proton Ion Implanted GaN…………15 4-3-1 Photoluminescence of Proton Ion Implanted GaN……………………………………15 4-3-2 Hall Measurement and X-ray Diffraction of Proton Ion Implanted GaN……………………16 4-4 Discussion………………………………………………17 Chapter 5. Conclusions and Future Work…………………………..20 5-1 Conclusions………………………………………………20 5-2 Future Work………………………………………………21 References….. …………………………………………………………22 Tables…………………………………………………………………...24 Figures………………………………………………………………….28

    Reference
    [1] C.J.Pan and G.C.Chi, Solid State Electronics 43, 621 (1999)
    [2] H. H. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S. J. Pearton, J. C. Zolper, and R. A. Stall, Appl. Phys. Lett. 72, 1190 (1998)
    [3] B. J. Pong, C. J. Pan, Y. C. Teng, G. C. Chi, W. H. Li, K. C. Lee, and C. H. Lee, J.Appl. Phys. 83, 5992 (1998)
    [4] J. S. Chan and N. W. Cheung, Appl. Phys. Lett. 68, 2702 (1996)
    [5] M. L. Kozhukh, Nuclear Instruments & Methods in Physics Research A329, 453 (1993)
    [6] A. Huber, F. Kuchar, and J. Casta, J.Appl. Phys. 55, 353 (1984)
    [7] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu, C. M. Chang, and W. C. Hung, J. Appl. Phys. 85, 1970 (1999)
    [8] S.C.Binari, H.B. Duetrich, G. Kelner, L.B. Rowland, K. Doverspike, and D. K. Wickenden, J. Appl. Phys. 78, 3008 (1995)
    [9] J. C. Zolper, AIP Conference, 392, 1017 (1997)
    [10] Marcie G. Wenistein, C. Y. Song, Michael Stavola, S. J. Wilson, R. J. Shul, K. P. Killeen, and M. J. Ludowise, Appl. Phys. Lett. 72, 1703 (1998)
    [11] B. D. Cullity, Elements of X-ray Diffraction, p.277
    [12] E. E. Haller, J. Appl. Phys. 77, 2857 (1995)
    [13] R. T. Young, J. W. Cleland, R. F. Wood, and M. M. Abraham, J. Appl. Phys. 49 4752 (1978)
    [14] I. S. Shlimak, Phys. of the Solid State, 41, 716 (1999)
    [15] J. M. Meese, J. Appl. Phys. 51, 3672 (1980)
    [16] J. M. Meese, J. Appl. Phys. 51, 3677 (1980)
    [17] Hans J. Hoffmann, J. Appl. Phys. 52, 4070 (1981)
    [18] J. -E. Mueller, W. Kellner, and H. Kniepkamp, J. Appl. Phys. 51, 3178 (1980)
    [19]M. Satoh, K. Kuriyama, and Y. Makita, J. Appl. Phys. 65, 2248 (1989)
    [20] N. P. Palaio, S. J. Pearton, and E. E. Haller, J. Appl. Phys. 55, 1437 (1984)
    [21] Y. Shon, T. W. Kang, and T. W. Kim, Appl. Surface Sciences 125, 321 (1998)
    [22] P. Pareja, R. M. de la Cruz, B. Mari, A. Segura, and V. Munoz, Physical Revirw B 47, 2870 (1993)
    [23] K. M. Itoh, E. E. Haller, W. L. Hansen, J. W. Beeman, J. W. Farmer, A. Rudnev, A. Tikhomirov, and V. I. Ozhogin, Appl. Phys. Lett. 64, 2121 (1994)
    [24] O. Schon, B. Schineller, M. Heuken, and R. Beccard, Journal of Crystal Growth 189/190, 335 (1998)

    QR CODE
    :::