| 研究生: |
王晨旭 Chen-Hsu Wang |
|---|---|
| 論文名稱: |
雙陽極局部電化學之精度與類DNA雙螺旋結構控制法之研究 Precision of Double-Anode Localized Electrochemical Deposition system and Double helix DNA structure Control System |
| 指導教授: | 黃衍任 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 局部電化學 、即時影像處理 、四軸運動控制 、Labview |
| 外文關鍵詞: | LECD, Four-axis machine, Real-time image processing. |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著半導體產業的快速發展,生產半導體的技術也逐漸地遇到瓶頸。於是,製作微結構物的工業技術,開始往其他的方向尋找創新的靈感。半導體產業通常為極度高精密的平面雕刻技術,舉凡,化學氣相沉積、物理氣相沉積、微影蝕刻、光刻等。而近年來快速發展的立體微結構物製作技術,像是3D列印、3D金屬列印等,也是克服了許多以前無法跨越的障礙,成為新趨勢,而本論文將探討與3D金屬列印相似的局部電化學技術。
半導體產業已然行之有年,而目前的精度已經達到奈米等級。卻並非所有和半導體相關的產品都需要如此高的精度,局部電化學技術能提供微米等級的製作工藝。 為了探討,局部電化學的可能性。本論文的第一部分,將探討在特定規格的陽極下,陽極的電壓對於沉積物的尺寸關係,來找到局部電化學在特定環境下,可以達到的精度。
第二部分則是嘗試使用雙陽極製作出雙螺旋結構物。而本實驗室的邱永傑學長在2016年時已經可以製作出單螺旋的結構物,而本研究將基於Labview開發一套有別於過去的C++的演算軟體,追求響應更快、開發容易、且能製作更複雜的雙螺旋結構物的控制法。
關鍵字: 局部電化學、即時影像處理、四軸運動控制、Labview
In past years, Semiconductor technology is rapidly developed. Most of Semiconductor products were made by PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), photolithography, lithography, etc. However, in recent years, for fabricated complex 3D microproducts, 3D printing and DMP (Direct Metal Printing) gradually become a new trend. In this research, we provide a technology, LECD (Localized Electrochemical Deposition), which is cheaper, environmental friendship, and efficiency than semiconductor technology.
First part of this research is to find out the possibility of LECD. We measure the precision of LECD system in this research environment.
Second part of this research, we try to use double anode to make a double-helix structure. In 2016, our lab already fabricated a helical string. In this year, we developed a brand new program based on Labview to fabricate a double helix microstructure. Compared to C++, it is easier to develop, and the responding speed is quicker. We expect it could provide us a high quality fabrication of microstructures.
Keywords: Localized electrochemical deposition (LECD); Labview; Four-axis machine; Real-time image processing.
[1] K. Ikuta and K. Hirowatari, “Real three dimen sional micro fabrication using stereo lithography and metal molding”, IEEE Proc. Micro Electro Mechanical Systems MEMS’93, 07-10 1993, Fort Lauderdale, FL, USA, pp.42-47.3, 1993. [2] E.W Becker et al., “Fabrication of microstructures with high aspect rations and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),“ Journal of Microelectronic Engineering”,vol.4,1, pp.35-36, 1986. [3] J. D. Madden and I. W. Hunter, “Three-dimensional microfabrication by localized electrochemical deposition,” Journal of Microelectromechanical Systems, 5, 24, 1996. [4] E. M. El-Giar, U Cairo, and D. J. Thomson, Proceedings of 1997 on Communications, Power and Computing; Winnipeg, MB; May 22-23, pp.327-332, 1997. [5] R. A. Said, “Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modeling”, Nanotrchnology 14,523-31, 2003. [6] C. S. Lin et al., “Improved copper microcolumn fabricated by localized electrochemical deposition,” Electrochem Solid St, 8, C125, 2005. [7] Yeo, S.H. and J.H. Choo, Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition. Journal of Micromechanics and Microengineering, 11(5): p. 435-442, 2001. [8] Said, R.A., Shape Formation of Microstructures Fabricated by Localized Electrochemical Deposition. Journal of The Electrochemical Society, 150(8): p. C549, 2003. [9] Lin, C.S., et al., Improved copper microcolumn fabricated by localized electrochemical deposition. Electrochemical and Solid State Letters, 8(9): p. C125-C129, 2005.
50
[10] S. K. Seol et al., “Coherent microradiology directly observes a critical cathode-anode distance effect in Localized Electrochemical Deposition”, Electrchem. Solid-State Lett. 7-9, 2004. [11] S. K. Seol et al., “Localized Electrochemical Deposition of Copper Monitored Using Re al-Time X-ray Microradiography, ”Advanced Functional Materials, 15, 934, 2005. [12] C.Y. Lee et al., “Localized Electrochemical Deposition process improvement by using different anodes and deposition directions”, J.Micromech. Microeng. 18 105008, 2008. [13] T. C. Chen et al., “The Development of a Real-Time Image Guided Micro Electroplating System,” International Journal of Electrochemical Science, 5, 10, 2010. [14] Y. J. Ciou et al., “Fabrication of 3D Micro structure by Localized Electrochemical Deposition with Image Feedback Distance Control and Five-Axis Motion Platform, ”ECS, vol. 5 ,7, pp425-432, 2016. [15] Y. C. Wen et al., “Real-time Image Feedback Control for Multiple-Anode Local Electrochemical Deposition System” Institute of Department of Mechanical Engineering, National Central University, 2017. [16] J. C. Lin et al., “On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating,”Electrochimica Acta, 54, 5703, 2009. [17] 林耀仚,「動態自動對焦演算法」,國立交通大學電子研究所碩士論文, 2007. [18] 鄭家昇,「順滑模式應用於氣動馬達伺服平台之定位控制」,國立中央大學機械工程研究所碩士論文, 2008. [19] 顧乃華,「以為陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析」,國立中央大學機械工程研究所碩士論文, 2015. [20] 游輝邦,「雙陽極即時影像微電鍍控制之研究」,國立中央大學機械工程研究所碩士論文, 2016.