跳到主要內容

簡易檢索 / 詳目顯示

研究生: 應帆
Fan Ying
論文名稱: 一個在 O p e n S t a c k 平台 進行 混 合 式 自 動 擴 展 的 方 法
A Hybrid Auto-Scaling Approach on OpenStack Cloud Platform
指導教授: 王尉任
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: 自動擴展混合式
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 虛擬化技術及網路環境尚未成熟前,機房建置主要透過實體機器組成伺服器群組來提供計
    算服務。隨著近幾年虛擬化技術及網路環境發展迅速,許多雲端上的計算機房也開始由傳
    統實體機房轉型為虛擬化機房,並透過虛擬機提供計算服務。當虛擬化機房面臨突然快速
    增加之計算請求時,一般會採用額外新增伺服器或者虛擬機器來分擔計算負荷,而這種方
    式稱為虛擬叢集之擴展,反觀傳統機房對於上述狀況無法如此迅速因應。而在實務上,例
    如 OpenStack 的自動擴展機制,採用的方法是反應式自動擴展機制,也就是去檢查系統資
    源使用是否超過預定的數值(Threshold)後進行資源調整。在本論文研究中,我們以預測式
    自動擴展機制為基礎,透過歷史資料來預測未來工作負載,使得伺服器叢集可以為即將到
    來的工作負載,提早準備好資源因應。本論文並將統計學的預測方法實作到 OpenStack 上,
    與反應式自動擴展結合,提出混合式自動擴展機制,最後透過實驗結果驗證本論文提出之
    策略,能在系統面臨大量工作負載來臨時,對於使用者請求完成數及回應速度有著優異表
    現,並且不會對系統造成額外負擔。
    關鍵字: 自動擴展、OpenStack、負載平衡、反應式自動擴展、預測式自動擴展、虛擬機。


    The use of virtualization technology has gradually changed the way a datacenter works in recent
    years. Nowadays the end-users of a datacenter do not access physical resources directly. Instead,
    they access virtualized resources, such as VMs and virtual clusters, on top of a pool of physical
    resources. This new computing paradigm provides the datacenter administrators a more flexible,
    scalable, manageable, and economical way for resource provisioning/sharing as prior study
    indicated. When a service on a VM encounters a massive amount of workload, it can scale faster
    than a non-virtualized datacenter, by dynamically turning on extra virtual/physical machines to
    share the workload. For example, OpenStack, an open source project for building a virtualized
    cloud platform, provides a reactive approach for auto-scaling. That is, it creates new VMs to
    share workload when the workload of a monitored VM exceeds a given workload threshold. The
    weakness of the mechanism is that, sometimes it is too late to handle unexpected workload surges
    and thus can decrease the quality of the services running on the VM. To this end, we purpose a
    new hybrid auto-scaling mechanism for auto-scaling. It relies on a predictive auto-scaling
    approach that predicts the upcoming workload by historical workloads. To prevent the case that
    the prediction result is not accurate enough, we also use the reactive auto-scaling mechanism
    provided by OpenStack, and integrate the two mechanisms as one. We have verified the
    performance of our approach via experiments, and the results show that, when a massive
    workload arrives, the proposed approach outperforms other approaches. In addition, the proposed
    approach does not incur much overhead as the experimental results show.
    Keywords: Auto-scaling, reactive auto-scaling, predictive auto-scaling, load balancing, load
    sharing, virtual machine

    目錄 摘要 ............................................................................................................................. i ABSTRACT ............................................................................................................... ii 目錄 ........................................................................................................................... iii 圖目錄 ....................................................................................................................... vi 表目錄 ..................................................................................................................... viii 一 、緒論 ................................................................................................................... 1 1-1 研究背景 .......................................................................................................... 2 1-1-1 雲端運算 ................................................................................................. 2 1-1-2 虛擬化技術 ............................................................................................. 4 1-1-3 雲端作業系統 ......................................................................................... 5 1-1-4 工作負載預測與自動擴展機制 ............................................................. 5 1-2 研究動機 .......................................................................................................... 5 1-3 研究目標 .......................................................................................................... 6 1-4 研究貢獻 .......................................................................................................... 6 1-5 論文架構 .......................................................................................................... 6 二、相關研究 ............................................................................................................ 7 2-1 工作負載預測方法 ......................................................................................... 7 2-2 自動擴展機制.................................................................................................. 7 iv 2-3 OpenStack 自動擴展機制 ............................................................................... 8 三、系統設計 .......................................................................................................... 13 3-1 預測工作負載的方法 ................................................................................... 13 3-2 歷史負載資料的重要性 ............................................................................... 17 3-3 混合式自動擴展之決策 ............................................................................... 20 3-4 預測工作負載的自動擴展演算法 ............................................................... 20 四、系統架構 .......................................................................................................... 24 4-1 基於 OpenStack 的工作負載預測及自動擴展機制的組成元件 ................ 24 4-1-1 OpenStack 相關元件 .............................................................................. 24 4-1-2 本論文實作元件 .................................................................................... 36 4-2 工作負載預測及自動擴展機制運作流程 ................................................... 37 4-3 反應式與預測式自動擴展機制的協同合作 ............................................... 40 五、實驗評估..........................................................................................................43 5 -1 實驗環境.......................................................................................................43 5-1-1 硬體配置....................................................................................................43 5-1-2 軟體配置...................................................................................................45 5-2 實驗步驟........................................................................................................45 5-3 實驗結果與分析............................................................................................46 5-3-1 混合式自動擴展機制............................................................................46 5-3-2 CPU 使用率、資源使用率與使用者請求回應速度 ...........................49 六、結論..................................................................................................................54 七、未來展望..........................................................................................................55 7-1 未來精進方向................................................................................................55 參考文獻..................................................................................................................57

    參考文獻
    [1] Y. Jadeja, and K. Modi, “Cloud computing - concepts, architecture and
    challenges,” in Computing, Electronics and Electrical Technologies
    (ICCEET), 2012 International Conference on, 2012, pp. 877-880.
    [2] A. S. Idris, N. Anuar, M. M. Misron, and F. H. M. Fauzi, “The readiness of
    Cloud Computing: A case study in Politeknik Sultan Salahuddin Abdul Aziz
    Shah, Shah Alam,” in Computational Science and Technology (ICCST),
    2014 International Conference on, 2014, pp. 1-5.
    [3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.
    Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud
    computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.
    [4] F. B. Shaikh, and S. Haider, “Security threats in cloud computing,” in
    Internet Technology and Secured Transactions (ICITST), 2011 International
    Conference for, 2011, pp. 214-219.
    [5] M. Rosenblum, and T. Garfinkel, “Virtual machine monitors: current
    technology and future trends,” Computer, vol. 38, no. 5, pp. 39-47, 2005.
    [6] L. Yunfa, L. Wanqing, and J. Congfeng, “A Survey of Virtual Machine
    System: Current Technology and Future Trends,” in Electronic Commerce
    and Security (ISECS), 2010 Third International Symposium on, 2010, pp.
    332-336.
    [7] G. Andrews, Foundations of Multithreaded, Parallel, and Distributed
    Programming: Addison–Wesley, 2000.
    [8] D. Peleg, Distributed computing: a locality-sensitive approach: Society for
    Industrial and Applied Mathematics, 2000.
    [9] W. Xiaolong, G. Genqiang, L. Qingchun, G. Yun, and Z. Xuejie,
    “Comparison of open-source cloud management platforms: OpenStack and
    OpenNebula,” in Fuzzy Systems and Knowledge Discovery (FSKD), 2012
    9th International Conference on, 2012, pp. 2457-2461.
    [10] C. Baun, M. Kunze, J. Nimis, and S. Tai, "Open Source Cloud Stack," Cloud
    Computing, pp. 49-62: Springer Berlin Heidelberg, 2011.
    [11] N. Taeheum, and K. Jongwon, “Cloud-based service function chaining with
    distributed VMs and its underlay-aware improvement,” in Information
    Networking (ICOIN), 2015 International Conference on, 2015, pp. 428-429.
    [12] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, and J. Chen,
    “A cost-aware auto-scaling approach using the workload prediction in
    service clouds,” Information Systems Frontiers, vol. 16, no. 1, pp. 7-18,
    03/01, 2014.
    51
    [13] K. Qazi, L. Yang, and A. Sohn, "Workload Prediction of Virtual Machines
    for Harnessing Data Center Resources." pp. 522-529, 2014.
    [14] D. Levy, “Chaos theory and strategy: Theory, application, and managerial
    implications,” Strategic Management Journal, vol. 15, no. S2, pp. 167-178,
    1994.
    [15] L. Yazdanov, and C. Fetzer, "Lightweight Automatic Resource Scaling for
    Multi-tier Web Applications." pp. 466-473, 2014.
    [16] A. Bashar, "Autonomic scaling of Cloud Computing resources using BNbased prediction models." pp. 200-204, 2013.
    [17] Z. Li, Z. Yichuan, P. Jamshidi, X. Lei, and C. Pahl, “Workload Patterns for
    Quality-Driven Dynamic Cloud Service Configuration and Auto-Scaling,” in
    Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International
    Conference on, 2014, pp. 156-165.
    [18] A. Keller, and H. Ludwig, “The WSLA Framework: Specifying and
    Monitoring Service Level Agreements for Web Services,” Journal of
    Network and Systems Management, vol. 11, no. 1, pp. 57-81, 2003/03/01,
    2003.
    [19] K. Hyejeong, K. Jung-in, K. Yoonhee, and H. Jaegyoon, “A SLA driven VM
    auto-scaling method in hybrid cloud environment,” in Network Operations
    and Management Symposium (APNOMS), 2013 15th Asia-Pacific, 2013, pp.
    1-6.
    [20] L. Shengming, W. Ying, Q. Xuesong, W. Deyuan, and W. Lijun, "A
    workload prediction-based multi-VM provisioning mechanism in cloud
    computing." pp. 1-6, 2013.
    [21] S. Imai, T. Chestna, and C. A. Varela, "Accurate Resource Prediction for
    Hybrid IaaS Clouds Using Workload-Tailored Elastic Compute Units." pp.
    171-178, 2013.
    [22] G. Tesauro, “Reinforcement Learning in Autonomic Computing: A
    Manifesto and Case Studies,” Internet Computing, IEEE, vol. 11, no. 1, pp.
    22-30, 2007.
    [23] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, "A Hybrid
    Reinforcement Learning Approach to Autonomic Resource Allocation." pp.
    65-73, 2006.
    [24] L. R. Moore, K. Bean, and T. Ellahi, “Transforming reactive auto-scaling
    into proactive auto-scaling,” in Proceedings of the 3rd International
    Workshop on Cloud Data and Platforms, Prague, Czech Republic, 2013, pp.
    7-12.
    [25] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review of Autoscaling Techniques for Elastic Applications in Cloud Environments,”
    Journal of Grid Computing, pp. 1 - 34, 2014.
    52
    [26] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
    “CloudSim: a toolkit for modeling and simulation of cloud computing
    environments and evaluation of resource provisioning algorithms,” Software:
    Practice and Experience, vol. 41, no. 1, pp. 23-50, 2011.
    [27] C. Magherusan-Stanciu, A. Sebestyen-Pal, E. Cebuc, G. Sebestyen-Pal, and
    V. Dadarlat, "Grid System Installation, Management and Monitoring
    Application," Parallel and Distributed Computing (ISPDC), 2011 10th
    International Symposium on, 2011, pp. 25-32.
    [28] R. Khare, and R. N. Taylor, “Extending the Representational State Transfer
    (REST) Architectural Style for Decentralized Systems,” in Proceedings of
    the 26th International Conference on Software Engineering, 2004, pp. 428 -437.
    [29] D. Mosberger, and T. Jin, “httperf—a tool for measuring web server
    performance,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3, pp. 31-37,
    1998.
    [30] D. Dongre, G. Sharma, M. P. Kurhekar, U. A. Deshpande, R. B. Keskar, and
    M. A. Radke, "Scalable Cloud Deployment on Commodity Hardware Using
    OpenStack," Advanced Computing, Networking and Informatics- Volume 2,
    Smart Innovation, Systems and Technologies M. Kumar Kundu, D. P.
    Mohapatra, A. Konar and A. Chakraborty, eds., pp. 415-424: Springer
    International Publishing, 2014.

    QR CODE
    :::