| 研究生: |
劉慧茹 Hui-ru Liu |
|---|---|
| 論文名稱: |
活性砂漿試體受單維電場作用下陽離子傳輸行為之研究 Cation Ion Migration Bhavior of Reactive Mortar Effected by 1D Electric Field with Different Density. |
| 指導教授: |
李 釗
Chau Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 鹼-矽反應 、電化學 、維修 、ALMT |
| 外文關鍵詞: | Repair, Mortar, Electrochemical, Alkali-silica reaction |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
運用加速鋰離子傳輸技術(Accelerated Lithium Migration Technique, ALMT)維修ASR的策略,是利用電的趨動力移除會誘發ASR的Na+及K+的同時,送入對ASR有抑制效果的Li+。本研究施加定電壓及定電流電場進行ALMT試驗,分別以LiOH.H2O及飽和Ca(OH)2作為陽與陰極電解液,分析改變砂漿試體的水灰比、水泥含鹼量、粒料/水泥比、長度,以及通電歷時與電場強度,對Na+及K+移除與Li+送入試體的傳輸行為影響。結果顯示,施加定電壓時,阻抗會隨時間增加,發現電壓值並不適合作為控制離子傳輸指標;施加定電流密度時,發現電流密度與Li+、Na+及K+的穩態流量有良好線性關係,適合作為ALMT工程實務的通電模式。電場強度愈大、水灰比愈高、含鹼量愈低及粒料/水泥比愈高時,愈有利於離子傳輸。增加試體長度並不會改變Na+及K+移出與Li+送入試體的速率。當通電至試體內的Na+與K+移出完成時,試體的膨脹量可降低為未通電試體的71 %,若通電至Li+流量達穩態時,則可完全抑制ASR膨脹問題。
An Accelerated Lithium Migration Technique (ALMT) was applied to simultaneously drive alkali out and lithium into concrete as a remedy for alkali-silica reaction (ASR) problems. Constant voltages and current densities were applied during the ALMT testing process. The anolyte and catholyte solutions consisted of 1L 1N LiOH.H2O and saturated Ca(OH)2, respectively. This research altered the conditions of testing such as the w/c ratio, the alkali content of cement and the aggregate/cement ratio of mortars, the distance of electrodes and the time-span of testing to analyze the migration behaviors of cations. The results show that the system resistance increases during the testing and the voltage value is not suitable as an index of ionic migration. There is a good linear relationship between the applied current density and the steady flux of the Li+, Na+ or K+. It is beneficial for the migration of ions as the bigger the applied electrical field, the higher the water/cement ratio, the lower the alkali content of cement and the higher the aggregate/cement ratio. Increasing the distance of electrodes does not alter the migrating rate of Li+, Na+ and K+. When the alkali content of specimen is complete removal, the decrease in its ASR expansion is 71 percent. When the flux of Li+ reaches steady state, the ASR expansion is inhibiting completely.
[1]. Gillott, J.E., “Alkali-aggregate reaction in concrete,” Engineering Geology,Vol.9, pp.303–326, 1975.
[2]. Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167–191, 2000.
[3]. Stanton, T.E., “Influence of cement and aggregate on concrete expansion,” Engineering News-Record, 124, Feb., 1940.
[4]. Swamy, R.N., “The alkali-silica reaction in concrete,” Van Nostrand Reinhold, New York, 1992.
[5]. Sidney Mindess, J. Francis Young , David Darwin., “Concrete-Sencond Edition,”Pearson Education ,Inc, 2003.
[6]. 李 釗、許書王、陳桂清,「由破裂之消波塊探討鹼骨材反應」,台灣省政府交通處港灣技術研究所港灣報導,1996。
[7]. Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigation alternatives,” Research Report ICAR 301-1F, 2001.
[8]. Bashar Taha , Ghassan Nounu. , “Using lithium nitrate and pozzolanic glass powder in concrete as ASR suppressors,” Cement & Concrete Composites, Vol. 30, pp.497–505, 2008.
[9]. Diamond, S., and Ong, S., “The mechanisms of lithium effects on ASR,”Proceeding of the 9th International Conference on Alkali-Aggregate Reaction,London, pp. 269-278 ,1992.
[10]. Stade, H., “On the reaction of C-S-H (Di, Poly) with alkali hydroxides,”Cement and Concrete Research, Vol. 19, pp. 802-810 ,1989.
[11]. Blackwell, B.Q., Thomas, M.D.A., and Sutherland, A., “Use of lithium tocontrol expansion due to alkali-silica reaction in concrete containing U.K. aggregates,” Durability of concrete proceedings Fourth CANMET/ACI International Conference, ACI SP 170-34, pp. 649-663 ,1997.
[12]. Qinghan, B., Nishibayashi, S., Xuequan, W., Yoshino, A., Hong, Z., Tiecheng, W, and Mingshu, T., “Preliminary study of effect of LiNO2 on expansion of mortars subjected to alkali-silica reaction,” Cement and Concrete Research, Vol. 25, No. 8, pp. 1647-1654,1995.
[13]. AASHTO Guide Specification, Section 56X ,1998「http://leadstates.tamu.edu/asr/library/gspec.stm」.
[14]. David, C.S., “Lithium Salt Admixtures- An Alternative Method to Prevent Expansive Alkali-Silica Reactivity,” 9th ICAAR, London,1992.
[15]. Lumley, J.S., “ASR Suppression by Lithium Compounds,” Cement and Concrete Research, Vol. 27, No. 2, pp. 235~244, 1997.
[16]. Stokes, D.B., “Use of Lithium to Combat Alkali-Silica Reactivity,” 10th ICAAR, London, pp. 862~867, 1996.
[17]. McCoy, W.J., and Caldwell, A.G., “New approach to inhibiting alkali-aggregate expansion,” Journal of the American Concrete Institute, Vol.22, No. 9, pp. 693–706 ,1951.
[18]. Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp. 229–234,1989.
[19]. Bashar Taha , Ghassan Nounu. , “Using lithium nitrate and pozzolanic glass powder in concrete as ASR suppressors,” Cement & Concrete Composites, Vol. 30, pp.497–505, 2008.
[20]. リハビリ工法研究会,「http://www.rehabilitate.jp/?cn=100029」
[21]. 日本ASRリチウム工法協會,「http://www.asrli.jp/?cn=100002」
[22]. Page, C.L., and Yu, S.W.,“Potential effects of electrochemical desalination of concrete on alkali-silica reaction ,” Magazine of concrete research, Vol.47, No, 170, pp. 23–31 ,1992.
[23]. Whitmore, D., and Abbott, S.,“Use of an applied electric field to drive lithium ions into alkali-silica reactive structures,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp.1089–1098, 2000.
[24]. P.J. Tumidajski , “Overlay current in a conductive concrete snow melting system,” Cement and Concrete Research. Vol. 33 ,pp. 1807–1809 ,2003.
[25]. Kevin J. Folliard, Michael D.A. Thomas, Benoit Fournier, Kimberly E. Kurtis, and Jason H. Ideker. , “Interim Recommendations for the Use of Lithium to Mitigate or PreventAlkali-Silica Reaction (ASR) ,” FHWA-HRT-06-073, pp.64,71–74, 2006.
[26]. Michael D.A. Thomas, Benoit Fournier, Kevin J. Folliard, Jason H. Ideker, and Yadhira Resendez. , “The Use of Lithium To Prevent or Mitigate Alkali -Silica Reaction in Concrete Pavements and Structures,” FHWA–HRT -06-133, pp. 29–32 ,2008.
[27]. 陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999。
[28]. 蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢,2002。
[29]. 劉志堅,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,國立中央大學土木工程研究所,博士論文,中壢,2003。
[30]. 林明峰,「利用電化學方法抑制AAR對鋼筋混凝土材料特性影響之研究」,國立中央大學土木工程研究所,碩士論文,中壢,2003。
[31]. 廖偉榕,「具 AAR 活性砂漿試體在不同單維電場強度作用之下離子傳輸行為研究」, 國立中央大學土木工程研究所,碩士論文,中壢,2008。
[32]. ASTM C1202-97., “Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration”, American Society for Testing and Material, 1997.
[33]. 「鋼筋混凝土構造物防蝕技術與應用研討會論文集」,交通部運輸研究所,1992。
[34]. 王瑞坤,「交流電在地下管線陰極防蝕引起的效應研究」,防蝕工程,Vol. 20, No. 2, pp. 143–150, 2006。
[35]. 羅俊雄、饒正,「公共工程腐蝕極陰極防蝕之現況」,防蝕工程,Vol. 21,No. 1, pp.1–20,2007。
[36]. 黃中梅、施建志,「電化學去鹽技術可行性評估」,防蝕工程,Vol. 11,No. 2, pp.58-63, 1997。
[37]. 陳桂清,「利用電化學技術應用於鹽害RC結構物之去鹽成效與鋼筋腐蝕行為研究」,國立中央大學土木工程研究所,博士論文,中壢,1999。
[38]. 蔣正武、孫振平,「電化學沉積法修復鋼筋混凝土裂縫的機理」,同濟大學學報,Vol. 32, No.11, 2004。
[39]. 張峻傑,「以加速氯離子穿透試驗評估混凝土耐久性之研究」,國立台灣海洋大學,碩士論文,基隆,2003。
[40]. Björn F. Johannesson., “Diffusion of a mixture of cations and anions dissolved in water,” Cement and Concrete Research, Vol. 29, pp. 1261–1270 ,1999.
[41]. NT BUILD 492, “Chloride migration coefficient from non-steadt-state migration experiments,”1999.
[42]. 江世哲、楊仲家,「以簡化方式供加速氯離子傳輸試驗中穩態氯離子傳輸係數」,混凝土工程研討會,2007。
[43]. 吳文貴,「混凝土加速氯離子傳輸試驗中非穩態與穩態傳輸性質之關係」,國立台灣海洋大學,碩士論文,基隆,2006。
[44]. C.C. Yang , S.W. Cho , Jack M. Chi , R. Huang., “An electrochemical method for accelerated chloride migration test in cement-based materials,” Materials Chemistry and Physics, pp.461–469,2002.
[45]. 江世哲、游琮聖、楊仲家,「利用電流值量測混凝土非穩態氯離子傳輸係數」,第一屆海峽兩岸混凝土技術研討會,2007。
[46]. ASTM C1260-94, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
[47]. ASTM C227-97, ”Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
[48]. 柯正龍,「台中、基隆及蘇澳港港區混凝土構造物鹼質與粒料反應調查研究」,國立中央大學土木工程研究所,碩士論文,中壢,1999年。
[49]. 王韡蒨,「台灣地區活性粒料之檢測方法研究」,國立中央大學土木工程研究所,碩士論文,中壢,2003年。
[50]. AASHTO T260-97, “Sampling and tsting for chloride ion in concrete and concrete raw materials,” 2001.
[51]. 王子豹,「不同電壓之加速氯離子傳輸試驗中比色法之影響」,國立台灣海洋大學,碩士論文,基隆,2005。
[52]. 翁在龍,「電場作用下氯離子在混凝土中傳輸速率與電流關係之探討」,國立台灣海洋大學,博士論文,基隆,2004。
[53]. 謝秉宏,「使用不同加速時間與電壓探討水泥砂漿中氯離子之傳輸行為」,國立台灣海洋大學,碩士論文,基隆,2006。
[54]. 楊近波、Folker H.WITTMANN、趙鐵軍、閰培渝, 「混凝土氯離子擴散係數試驗之研究」,建築材料學報,第10卷第2期,2007。