| 研究生: |
江重致 Chong-Jhih Jiang |
|---|---|
| 論文名稱: |
人眼眼球模型建構與人因照明之研究 Study of a human eye model and the human-factor lighting |
| 指導教授: |
孫慶成
Ching-Cherng Sun 陳怡君 Yi-Chun Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 眼球模型 、人因照明 、虹膜 、眼內散射 、失能眩光 、不舒適眩光 |
| 外文關鍵詞: | Eye model, Human-factor lighting, Iris, Ocular Scatter, Disability glare, Discomfort glare |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今白光LED因其節能優勢已逐漸成為照明世界的主流,但由於其單位面積下的高效輸出與嶄新的光譜,除了為人類帶來前所未有的視覺感受,同時也引起相關人因方面的疑慮。為因應這股新潮流,此論文將以人眼視覺為出發點,再以此為基礎接續照明環境的探討。人眼眼球模型的建構即是此論文首先達到的成果,其幾何與介質參數均採用生物醫學統計資料,並且完成了視覺靈敏度、色差以及散射行為等驗證。為探討虹膜在人眼中所扮演的角色,其反射頻譜接續為研究重點之一。對此,虹膜研究引入了成像系統與共焦系統來作為量測的平台,除了比較兩者之優劣外,也校正出真實虹膜反射頻譜,而其頻譜成果更引入眼球模型做雜散光的分析。
充分掌握視覺科學以及眼球計算平台後,本論文著手進入人眼與周圍光環境之間的交互作用。在戶外照明之人因評估上,除了介紹失能眩光、其公式演進以及相關道路法規建議以外,後續研究的主要內容包含眩光表現的視覺模擬、不同色溫之白光LED對視覺靈敏度帶來的影響以及白光LED路燈眩光的探討。在室內照明之人因評估上,除了對不適眩光做更深入之介紹外,亦會建構其計算平台並與失能眩光之間的關係做比較與討論。而現今逐漸流行的LED燈管,亦在此與室內照明最常用的傳統日光燈管做不適眩光效應之比較,且根據相同視覺舒適度推算得到LED燈管的建議尺寸。此論文最後探討室內照明之光譜與人體之間的交互作用,尤其是現今最常用於室內照明的螢光燈管與白光LED之光譜。期待藉由上述研究之成果,此論文能夠在健康照明的領域上提出相關建議與貢獻。
White LED has become one of the most popular luminaires nowadays. However, the high density of lumen output and new spectrum from LEDs not only bring human beings new visual sensations but also safety concerns. In accordance with the new trend, this research starts from the study of human vision and then the interaction with the lighting environment. The human eye model is first constructed in this thesis, where the geometric parameters and refractive indices are adopted from the biometric data. The visual acuity, chromatic dispersion, and ocular scattering behaviors of the eye model are also verified. The iris is then the next topic to analyze its contribution in ocular scattering. The spectral reflectance of iris is measured by an imaging system and a confocal system. The comparisons between the two systems as well as the calibrated spectral reflectance are obtained. Then the iris reflectance is incorporated into the eye model for straylight analysis.
After knowing well about the visual behaviors, the thesis handles the interaction between the human eye and lighting environment. In the field of outdoor lighting, the thesis first introduces the disability glare formula and the recommendation of road lighting, and then shows some studies such as visual image simulation with glare sources, the influence on visual acuity by varied CCT lighting, and the glare effect from LED-based street lamps. In the field of interior lighting, the thesis introduces the discomfort glare and develops a calculation platform. The studies here include building a transfer function between disability glare and discomfort glare, assessing the discomfort glare of fluorescent lamps and white LED tubes, and revealing their affecting levels to human circadian rhythms. Finally, according to the research outcomes, the thesis is anticipated to contribute the field of human factors lighting.
[1] G. C. Brainard, “Action spectrum for melatonin Regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405-6412 (2002).
[2] R. H. S. Carpenter, Movements of the eyes (2nd ed.), Pion Ltd, London, 1988.
[3] Cunningham, Vaughan & Asbury's General Ophthalmology, McGraw-Hill Medical, New York, 18th.
[4] G. Westheimer, “Image quality in the human eye,” J. Mod. Opt. 17, 641–658 (1970).
[5] A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics (2nd ed)., Butterworth-Heinemann, Oxford, 1989.
[6] G. L.Walls, The Vertebrate Eye., Bloomfield Hills (Cranbrook Institute of Science), Mich, 1942.
[7] E. Hecht, Optics (2nd ed)., Addison-Wesley, USA, 1987.
[8] Light as a True Visual Quantity: Principles of Measurement, CIE Publication No. 41, 1978.
[9] D. B. Judd and G. Wyszecki, Color in Business, Science and Industry (Wiley Series in Pure and Applied Optics third edition)., Wiley-Interscience, New York, 1975.
[10] M. Fairchild, Color Appearance Models., Addison, Wesley, & Longman, Massachusetts, 1998.
[11] R.Gregory and P. Cavanagh, “The Blind Spot,” Scholarpedia, 2011.
[12] Eye, human., Encyclopædia Britannica, 2008.
[13] H. Barton and K. Byrne, Introduction to Human Vision., Visual Defects & Eye Tests, 2007.
[14] Sensory Reception: Human Vision: Structure and Function of the Human Eye., Encyclopædia Britannica, 1987.
[15] P. R. Boyce, “Age, illuminance, visual performance and preference,” Light. Res. Technol. 5, 125-144 (1973).
[16] T. M. Aslam, D. Haider and I. J. Murray, “Principles of disability glare measurement: an ophthalmological perspective,” Acta. Ophthalmol. Scand. 85, 354-360 (2007).
[17] American National Standard Practice for Roadway Lighting. New York: ANSI/IES, 1983.
[18] P. W. Cobb, “The influence of illumination of the eye on visual acuity,” Am. J. Physiol. 29, 76-99 (1911).
[19] D. D. Koch, “Glare and contrast sensitivity testing in cataract patients,” J. Cataract Refr. Surg. 15, 158–64 (1989).
[20] W. S. Stiles, “The effect of glare on the brightness difference threshold,” Aoc Roy Soc Lond B 104, 322-355 (1929).
[21] T. J. van den Berg, “On the relation between glare and straylight,” Doc. Ophthalmol. 78, 177–81 (1991).
[22] Recommendations for the Lighting of Roads for Motor and Pedestrian Traffic., CIE Publication 115, Vienna, 1995.
[23] Discomfort Glare in Interior Lighting., CIE Publication 117, 1995.
[24] V. L. Warman, D. J. Dijk, G. R. Warman, J. Arendt, and D. J. Skene, “Phase advancing human circadian rhythms with short wavelength light,” Neurosci. Lett. 342, 37–40 (2003).
[25] C. Grimm, A. Wenzel, T. Williams, P. Rol, F. Hafezi, and C. Remy, “Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching,” Invest. Ophthalmol. Vis. Sci. 42, 497–505 (2001).
[26] S. M. Berman, G. Fein, D. L. Jewett, and F. Ashford, “Luminance controlled pupil size affects Landolt C task performance,” J. Illumin. Engine. Soc. 22, 150-65 (1993).
[27] S. M. Berman, G. Fein, D. L. Jewett, and F. Ashford, “Landolt C recognition in elderly subjects is affected by scotopic intensity of surrounding illuminants,” J. Illumin. Engine. Soc. 23, 123–28 (1994).
[28] P. R. Boyce, Y. Akashi, C. M. Hunter, and J. D. Bullough, “The impact of spectral power distribution on the performance of an achromatic visual task,” Light. Res. Technol. 35, 141-161 (2003).
[29] S. M. Berman, M. Navvab, M. J. Martin, J. Sheedy, and W. Tithof, “A comparison of traditional and high colour temperature lighting on the near acuity of elementary school children,” Light. Res. Technol. 38, 41-49 (2006).
[30] J. R. Meyer-Arendt, “Radiometry and photometry: units and conversion factors,” Appl. Opt. 7, 2081-2084 (1968).
[31] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics., SPIE PRESS, Washington, 1998.
[32] J. Strutt, “On the light from the sky, its polarization and colour,” Philos. Mag. 41, 107-120, 274-279 (1871).
[33] J. Strutt, “On the scattering of light by small particles,” Philos. Mag. 41, 447-454 (1871).
[34] J. Strutt, “On the electromagnetic theory of light,” Philos. Mag. 12, 81-101 (1881).
[35] J. Strutt, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philos. Mag. 47, 375-394 (1899).
[36] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Annalen der Physik 330, 377-445 (1908).
[37] H. von Helmholtz, Physiologische Optik (3rd ed)., Voss, Hamburg, 1909.
[38] A. Gullstrand, appendix in Physiologische Optik (3rd ed., H. Von Helmholtz, Ed.), Voss, Hamburg, 1909.
[39] H. H. Emsley, Visual Optics(5th ed.), Hatton Press Ltd., London, 1952.
[40] Y. Le Grand, Optique Physiologique I, Ed. Rev. Opt., Paris, 1953.
[41] W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1529 (1971).
[42] R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1280 (1985).
[43] A. Popiolek-Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic Physiol. Opt. 19, 41–48 (1999).
[44] J. W. Blaker, “Toward an adaptive model of the human eye,” J. Opt. Soc. Am. 70, 220–223 (1980).
[45] H. L. Liou and N. A. Brennan, “Anatomically accurate finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
[46] A. V. Goncharov and C. Dainty, “Wide-field schematic eye model with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157–2174 (2007).
[47] I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[48] L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[49] R. Navarro, F. Palos, and L. González, “Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A 24, 2175–2185 (2007).
[50] R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. optics of the accommodating aging lens,” J. Opt. Soc. Am. A 24, 2911–2920 (2007).
[51] J. E. Purkinje, Chapters 11 and 12 in Beobachtungen und Versuche zur Physiologie der Sinne (Observations and Experiments Investigating the Physiology of Senses), In Commission der J.G. Calve'schenBuchhandlung, Prague (1823).
[52] J. J. Vos and J. Boogaard, “Contribution of the cornea to entoptic scatter,” J. Opt. Soc. Am. 53, 869–873 (1963).
[53] J. J. Vos and M. A. Bouman, “Contribution of the retina to entoptic scatter,” J. Opt. Soc. Am. 54, 95–100 (1964).
[54] T. J. T.P. van den Berg, J. K. Ijspeert, and P. W. T. de Waard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vision Res. 31, 1361–1367 (1991).
[55] K. O. Gilliland, C. D. Freel, S. Johnsen, W. C. Fowler, and M. J. Costello, “Distribution, spherical structure and predicted Mie scattering of multi-lamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
[56] R. Navarro, “Incorporation of intraocular scattering in schematic eye models,” J. Opt. Soc. Am. A2, 1891–1894 (1985).
[57] M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[58] C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45, 2352–2366 (2005).
[59] S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophth. Vis. Sci. 49, 2531-2540 (2008).
[60] D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[61] M. D. M. Encina, J. M. Potau, D. Ruano, J. Costa, M. Canals, “A comparative study of Bowman’s layer in some mammals Relationships with other constituent corneal structures,” Eur. J. Anat. 6, 133–40 (2002).
[62] G. T. H. Smith, N. A. P. Brown, and G. A. Shun-Shin, “Light scatter from central human cornea,” Eye 4, 584-588 (1990).
[63] J. J. Vos and J. Boogaard, “Contribution of the cornea to entopic scatter,” J. Opt. Soc. Am. 53, 869-873 (1963).
[64] D. W. Demott and R. M. Boynton, “Sources of entoptic stray light,” J. Opt. Soc. Am. 48, 120-125 (1958).
[65] T. Feuk, “The wavelength dependence of scattered light intensity in rabbit corneas,” Trans. Bio-Med. Eng. 18, 92-96 (1971).
[66] J. J. Vos and T. J. T. P. van den Berg, “Report on disability glare,” CIE collection 135, 1–9 (1999).
[67] K. O. Gilliland, C. D. Freel , C. W. Lane , W. C. Fowler , and M. J. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130(2001).
[68] M. J. Costello, S. Johnsen , K. O. Gilliland, C. D. Freel, W. C. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[69] K. Matsuzaki, O. Murase, K. Sugishita, S. Yoneyama, K. Akada, M. Ueha, A. Nakamura, S. Kobayashi, “Optical characterization of liposomes by right angle light scattering and turbidity measurement,” Biochim. Biophys. Acta. 1467, 219–226 (2000).
[70] N. P. A. Zagers, J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, “Simultaneous measurement of foveal spectral reflectance and cone-photoreceptor directionality,” Appl. Opt. 41, 4686–4696 (2002).
[71] D. A. Salyer, K. Twietmeyer, N. Beaudry, S. Basavanthappa, R. I. Park, and R. Chipman, “In vitro multispectral diffuse reflectance measurements of the porcine fundus,” Invest. Ophthalmol. Vis. Sci. 46, 2120-2124 (2005).
[72] J. Cheriyan, B. H. P. Menon, K. A. Narayanankutty, “3D reconstruction of human retina from a single fundus image,” Proceeding of the 2011 International Conference on Image processing, Computer Vision, & Pattern Recognition 1, 252 (2011).
[73] M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47, 179-197 (2002).
[74] R. Yuan, D. Yager, M. Guethlein, G. Oliver, N. Kapoor, and R. Zhong, “Controlling unwanted sources of threshold change in disability glare studies: a prototype apparatus and procedure,” Optom. Vis. Sci. 70, 976-981 (1993).
[75] Y. C. Chen, C. J. Jiang, T. H. Yang, and C. C. Sun, “Development of a human eye model incorporated with intraocular scattering for visual performance assessment,” J. Biomed. Opt. 17, 075009 (2012).
[76] A. Guirao, C. González, M. Redondo, E. Geraghty, S. Norrby, P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Vis. Sci. 40, 203–213 (1999).
[77] Y. Le. Grand and S. G. El Hage, Physiological Optics, Springer-Verlag, 1980.
[78] M. Abrahamsson and J. Sjöstrand, “Impairment of contrast sensitivity function (CSF) as a measure of disability glare,” Invest. Ophthalmol. Vis. Sci. 27, 1131-1136 (1986).
[79] D. N. Hu, J. D. Simon, and T. Sarna, “Role of ocular melanin in ophthalmic physiology and pathology,” Photochem. Photobiol. 84 (3), 639-644 (2008).
[80] T. Sarna, “Properties and function of the ocular melanin - a photobiophysical view,” J. Photochem. Photobiol. B-Biol. 12 (3), 215-258 (1992).
[81] D. N. Peles and J. D. Simon, “The ultraviolet absorption coefficient of melanosomes decreases with increasing pheomelanin content,” J. Phys. Chem. B 114, 9677-9683 (2010).
[82] S. Regan, H. E. Judge, E. S. Gragoudas, and K. M. Egan, “Iris color as a prognostic factor in ocular melanoma,” Arch. Ophthalmol. 117, 811-814 (1999).
[83] J. Rootman and R. P. Gallagher, “Color as a risk factor in iris melanoma,” Am. J. Ophthalmol. 98, 558-561 (1984).
[84] P. Mitchell, W. Smith, and J. J. Wang, “Iris color, skin sun sensitivity, and age-related maculopathy - The Blue Mountains Eye Study,” Ophthalmol. 105, 1359-1363 (1998).
[85] F. H. Imai, “Preliminary experiment for spectral reflectance estimation of human iris using a digital camera,” Tech. rep., Munsell Color Science Laboratory, Rochester Institute of Technology, Rochester, N.Y., U.S.A., (2002).
[86] M. Villaseca, R. Mercadal, J. Pujol, M. Arjona, M. Lasarte, R. Huertas, M. Melgosa, and F. H. Imai, “Characterization of human iris spectral reflectance with a multispectral imaging system,” Appl. Opt. 47, 5622-5630 (2008).
[87] G. V. G. Baranoski and M. W. Y. Lam, “Qualitative assessment of undetectable melanin distribution in lightly pigmented irides,” J. Biomed. Opt. 12, 030501 (2007).
[88] M. W. Y. Lam and G. V. G. Baranoski, “A predictive light transport model for the human iris,” Comput. Graph. Forum 25, 359-368 (2006).
[89] A. R.Wielgus and T. Sarna, “Melanin in human irides of different color and age of donors,” Pigment Cell Res. 18, 454-464 (2005).
[90] G. Francois, P. Gautron, G. Breton, and K. Bouatouch, “Image-based modeling of the human eye,” IEEE Trans. Vis. Comput. Graph. 15, 815-827 (2009).
[91] J. M. Medina, L. M. Pereira, H. T. Correia, and S. Nascimento, “Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra,” J. Biomed. Opt. 16, 076001-076012 (2011).
[92] B. A. J. Clark and L. G. Carney, “Refractive index and reflectance of the anterior surface of the cornea,” Am. J. Optom. Arch. Am. Acad. Optom. 48, 333-343 (1971).
[93] E. A. Boettner, “Spectral transmission of the eye,” Report of the University of Michigan Ann Arbor Contract AF41-609-2966, USAF School of Aerospace Medicine, 1967.
[94] W. Ambach, M. Blumthaler, T. Schopf, E. Ambach, F. Katzgraber, F. Daxecker, and A. Daxer, “Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation,” Doc. Ophthalmol. 88, 165-173 (1994).
[95] E. M. Beems and J. A. van Best, “Light transmission of the cornea in whole human eyes,” Exp. Eye Res. 50, 393-395 (1990).
[96] L. Kolozsvari, A. Nogradi, B. Hopp, and Z. Bor, “UV absorbance of the human cornea in the 240- to 400-nmrange,” Invest. Ophthalmol. Visual Sci. 43, 2165-2168 (2002).
[97] J. van de Kraats and D. Van Norren, “Optical density of the aging human ocular media in the visible and UV,” J. Opt. Soc. Am. A 24, 1842-1857 (2007).
[98] Y. C. Chen, C. J. Jiang, J. S. Huang, S. Y. Chen, and C. C. Sun, “Imaging and confocal systems for in vivo measurements of human-Iris spectral reflectance,” J. Display Technol. 10, 595-600 (2014).
[99] D. Sliney and M. Wolbarsht, Safety with Lasers and other optical sources, Plenum, New York, 1980.
[100] American National Standard for Safe Use of Lasers, ANSI Z136.1, Orlando, 2007.
[101] J. W. Goethe Zur Farbenlehre I, Tübingen, 1810, Ch.8., Taschenb Verlag, Deutsch, 1963.
[102] H. Helmholtz, “Ueber Herrn Brewsters Analyse des Sonnenlichtes,” Ann Physik und Chemie 86, 501-523 (1852).
[103] W. S. Stiles, Discussion on disability glare at the 1939 CIE meeting in Scheveningen. Sekretariatsberichte der Zehnten Tagung CIE, Band I, 183-201, 1942.
[104] W. S. Stiles, “The scattering theory of the effect of glare on the brightness difference threshold,” Proc Roy Soc Lond, 105B, 131-146 (1930).
[105] G. A.Fry, “A re-evaluation of the scatter theory of glare,” Illum. Eng. 49, 98-102 (1954).
[106] J. J. Vos, On mechanisms of glare, Doctoral dissertation, Utrecht University, 1963.
[107] J. K. IJspeert, P. W. T. De Waard, T. J. T. P. Van den Berg, P. T. V. M. De Jong, “The intraocular stray-light function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision. Res. 16, 215-219 (1976).
[108] M. Iwata and S. Uchida, “Experiment to evaluate visibility with street luminaires with different upward light output ratios and the use of calculated veiling luminance to determine contrast performance,” J. Light & Vis. Env. 35, 42-54 (2011).
[109] A. M. Ylinen, L. Tähkämö, M. Puolakka, and L. Halonen, “Road lighting quality, energy efficiency, and mesopic design – LED street lighting case study,” J. IESNA 8, 9-24 (2011).
[110] C. C. Sun, C. J. Jiang, Y. C. Chen, and T. H. Yang, “Glare effect for three types of street lamps based on white LEDs,” Opt. Rev. 21, 215-219 (2014).
[111] X. Long, R. Liao, and J. Zhou, “Development of street lighting system-based novel high-brightness LED modules,” IET Optoelectrons 3, 40-46 (2009).
[112] Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18, 22020-22031 (2010).
[113] T. Taguchi, “Present status of white LED lighting technologies in Japan,” J. Light & Vis. Env. 27, 131-139 (2003).
[114] T. Whitaker, “Developments in LED street lighting,” LEDs Magazine, 42-45 (2007).
[115] Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52, 889–893 (2012).
[116] P. O. Vaccaro, “Lateral P–N junctions for high-density LED arrays,” Microelectr. J. 34, 355-357 (2003).
[117] J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik 121, 1761–1765 (2010).
[118] S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19, A716-A724 (2011).
[119] X. H. Lee, I. Moreno, and C. C. Sun, "High-performance LED street lighting using microlens arrays," Opt. Express 21, 10612-10621 (2013).
[120] M. G. Alpern and F. W. Campbell, “The spectral sensitivity of consensual light reflex,” J. Physiol. 164, 478-507 (1962).
[121] M. G. Alpern and N. Ohba, “The effect of bleaching and backgrounds on pupil size,” Vision Res. 12, 943-951 (1972).
[122] M. S. Rea, M.J. Ouellette and D. K. Tiller, “The effects of luminous surroundings on visual performance, pupil size, and human preference,” J. IES 19, 45-58 (1990).
[123] G. Wald, “Human vision and the spectrum,” Sci. 101, 653-658 (1945).
[124] P. K. Brown and G.. Wald, “Visual pigments in single rods and cones of the human retina,” Sci. 144, 45-52 (1964)
[125] J. K. Bowmaker and H. J. A. Dartnall, “The visual pigments of rods and cones in a human retina,” J. Physiol. 298, 501-511 (1980).
[126] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers., Spinger, 1997.
[127] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, 1999.
[128] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Pattent, US 6685852 B2, 2004.
[129] A. Troelstra, “Detection of time-varying light signals as measured by the pupillary response,” J. Opt. Soc. Am. 58, 685-90 (1968).
[130] M. S. Rea, M. J. Ouellette, and D. K. Tiller, “The effects of luminous surroundings on visual performance, pupil size, and human preference,” J. Illum. Eng. Soc. 19, 45-58 (1990).
[131] International Lighting Vocabulary, 4th ed., CIE Publication No. 17.4, Publication 50 (845), 1987.
[132] J. J. Vos, “Reflections on glare,” Lighting Res. Technol. 3, 163–176 (2003).
[133] ZVEI-Leitfaden zur DIN EN 12464-1 ZVEI-Leitfaden zur Planung mit der DIN EN 12464-1, aufgerufen am 8. 2011.
[134] M. Luckiesh, S. K. Guth, “Brightnesses in visual field at borderline between comfort and discomfort (BCD),” Illum. Eng. 44, 650-670 (1949).
[135] Discomfort glare in the interior working environment, CIE Publication 115, France, 1983.
[136] C. J. Jiang, C. C. Sun, Y. C. Chen, T. H. Yang, and N. Chang, “The correlation of veiling luminance and unified glare rating with a transfer function,” Lighting Res. Technol. 1477153513493799, 1-6 (2013).
[137] Photobiological safety of lamps and lamp systems, IEC 62471, 2006.