跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉書孝
Shu-Xiao Liu
論文名稱: The Study of the Di-Higgs Production via Vector Boson Fusion Channel for the Phase II CMS at √𝐬 =14 TeV
指導教授: 余欣珊
Shin-Shan Eiko Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 61
中文關鍵詞: 雙希格斯玻色子生成
外文關鍵詞: HHVBF, HL-LHC
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大型強子對撞機將會在下個10 年進入高亮度大型強子對撞機時期並且在14 兆電子伏特質心對撞能量下運作。預期每年的總亮度為300 fb−1。在本研究中,雙希格斯玻色子生成經向量玻色子融合通道將被研究。雙希格斯玻色子會被重建為兩個AK8 噴流,向量玻色子融合噴流會被重建為兩個AK4 噴流。針對雙希格斯玻色子及向量玻色子融合拓樸設計的篩選會被採用。動力學分布及沒有堆疊跟200堆疊的比較會被呈現。對於6 個模型中理論參數的篩選通過率也會被研究。


    LHC will enter the era of High-Luminosity LHC in the next 10 year and will run at sqrt(s) = 14 TeV. The designed integrated luminosity is 300 fb􀀀1 per year. The di-Higgs production via vector boson fusion channel is probed in this analysis. The Higgs bosons are reconstructed by two AK8 jets and the VBF jets are reconstruct by AK4 jets. The selections designed for VBF topology and di-Higgs are applied. The kinematic distribution and the comparison with no pile up and 200 pile up are presented. The efficiency of each selection is also studied for six variations of the theoretical parameters in the theory model.

    1 Introduction and Theory Overview 1 1.1 Introduction . . . . . . . . . . . . 1 1.2 Review of Run 2 Result . . . . . . . 1 1.3 Theoretical Overview . . . . . . . . 2 1.4 Benchmark . . . . . . . . . . . . . . 2 2 Experimental Apparatus 5 2.1 Large Hadron Collider . . . . . . . . 5 2.1.1 The High Luminosity LHC . . . . . . 6 2.2 Compact Muon Solenoid . . . . . . . . 6 2.2.1 Magnetic system . . . . . . . . . . 7 2.2.2 Tracker . . . . . . . . . . . . . . 8 Microstrip Detector . . . . . . . . 9 Pixel Detector . . . . . . . . . 9 2.2.3 Calolimeter . . . . . . . . . . . . . . 10 Electromagnetic Calorimeter . . . . . . . 10 Hadron Calorimeter . . . . . . . 11 2.2.4 Muon Detector . . . . . . . . . . . . 11 2.2.5 Trigger . . . . . . . . . . . . . . . . 12 3 Physical Objects, Sample Production and Selection 15 3.1 Physical Objects . . . . . . . . . . . . . . . 15 3.1.1 Sample Production: LHE and Reconstruction Level . . . . 15 3.1.2 Vertex and Pile Up . . . . . . . . . 16 3.1.3 Jet Reconstruction . . . . . . . . . 16 3.1.4 Soft Drop Mass . . . . . . . . . . . . 17 3.1.5 DeepAK8 . . . . . . . . . . . . 18 3.2 MC Samples . . . . . . . . . . . . . . . . . 18 3.3 Selection . . . . . . . . . . . . . . 19 4 Result . . . . . . 21 4.1 13 and 14 TeV LHE comparison . . . . . . . . . . . 21 4.2 Cut flow studies of signal . . . . . . . . . . . 28 4.3 6 parameters kinematic comparison . . . . . . . . 30 Appendix A Cut flow 37 Bibliography 39

    [1] Fady Bishara, Roberto Contino, and Juan Rojo. “Higgs pair production
    in vector-boson fusion at the LHC and beyond”. In: The European Physical
    Journal C 77.7 (2017), p. 481. ISSN: 1434-6052. DOI: 10.1140/epjc/
    s10052-017-5037-9. URL: https://doi.org/10.1140/epjc/
    s10052-017-5037-9.
    [2] S. Chatrchyan et al. “The CMS experiment at the CERN LHC”. In: JINST 3
    (2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
    [3] Patrawan Pasuwan. “Track-counting luminosity measurements in ATLAS”.
    In: PoS LHCP2019 (2019). Ed. by Pablo Roig Garcés et al., p. 063.
    DOI: 10.22323/1.350.0063.
    [4] Burkhard Schmidt. “The High-Luminosity upgrade of the LHC: Physics
    and Technology Challenges for the Accelerator and the Experiments”. In:
    J. Phys.: Conf. Ser. 706.2 (2016), 022002. 42 p. DOI: 10.1088/1742-6596/
    706/2/022002. URL: https://iopscience.iop.org/article/
    10.1088/1742-6596/706/2/022002.
    [5] Jean-Marc Lévy-Leblond and Jean-Pierre Provost. “Additivity, rapidity,
    relativity”. In: American Journal of Physics 47.12 (1979), pp. 1045–1049. DOI:
    10.1119/1.11972. URL: https://doi.org/10.1119/1.11972.
    [6] CMS Collaboration. “Precise mapping of the magnetic field in the CMS
    barrel yoke using cosmic rays”. In: Journal of Instrumentation 5.03 (2010),
    T03021–T03021. ISSN: 1748-0221. DOI: 10.1088/1748- 0221/5/03/
    t03021. URL: http://dx.doi.org/10.1088/1748-0221/5/03/
    T03021.
    [7] I Gorelov et al. “Electrical characteristics of silicon pixel detectors”. In: Nuclear
    Instruments and Methods in Physics Research Section A, 202-217 (2002)
    489 (Aug. 2002). DOI: 10.1016/S0168-9002(02)00557-0.
    [8] Particle Data Group et al. “Review of Particle Physics”. In: Progress of Theoretical
    and Experimental Physics 2020.8 (Aug. 2020). 083C01. ISSN: 2050-3911.
    DOI: 10.1093/ptep/ptaa104. eprint: https://academic.oup.
    com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.
    pdf. URL: https://doi.org/10.1093/ptep/ptaa104.
    [9] K. Deiters et al. “Avalanche photodiodes for the CMS detector”. In: 2000
    IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).
    Vol. 1. 2000, 7/32–7/35 vol.1. DOI: 10.1109/NSSMIC.2000.949269.
    [10] Simon Honc. “New applications of the multi variate analysis framework
    NeuroBayes for an inclusive b-jet cross section measurement at CMS”.
    PhD thesis. 2011. DOI: 10.5445/IR/1000023325.
    [11] S. Abdullin et al. “Design, performance, and calibration of the CMS
    hadron-outer calorimeter”. In: European Physical Journal C 57 (Oct. 2008),
    pp. 653–663. DOI: 10.1140/epjc/s10052-008-0756-6.
    [12] J. Alwall et al. “The automated computation of tree-level and next-toleading
    order differential cross sections, and their matching to parton
    shower simulations”. In: Journal of High Energy Physics 2014.7 (2014), p. 79.
    ISSN: 1029-8479. DOI: 10.1007/JHEP07(2014)079. URL: https://
    doi.org/10.1007/JHEP07(2014)079.
    [13] Johannes Bellm et al. “Herwig 7.0/Herwig++ 3.0 release note”. In: Eur.
    Phys. J. C 76.4 (2016), p. 196. DOI: 10.1140/epjc/s10052-016-4018-
    8. arXiv: 1512.01178 [hep-ph].
    [14] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. In: Computer
    Physics Communications 191 (2015), 159–177. ISSN: 0010-4655. DOI: 10 .
    1016/j.cpc.2015.01.024. URL: http://dx.doi.org/10.1016/
    j.cpc.2015.01.024.
    [15] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-ktjet
    clustering algorithm”. In: Journal of High Energy Physics 2008.04 (2008),
    063–063. ISSN: 1029-8479. DOI: 10.1088/1126-6708/2008/04/063.
    URL: http://dx.doi.org/10.1088/1126-6708/2008/04/063.
    [16] Simone Marzani, Lais Schunk, and Gregory Soyez. “The jet mass distribution
    after Soft Drop”. In: The European Physical Journal C 78.2 (2018). ISSN:
    1434-6052. DOI: 10.1140/epjc/s10052-018-5579-5. URL: http:
    //dx.doi.org/10.1140/epjc/s10052-018-5579-5.
    [17] A.M. Sirunyan et al. “Identification of heavy, energetic, hadronically decaying
    particles using machine-learning techniques”. In: Journal of Instrumentation
    15.06 (2020), P06005–P06005. DOI: 10.1088/1748-0221/15/
    06/p06005. URL: https://doi.org/10.1088/1748-0221/15/06/
    p06005.
    [18] Search for vector boson fusion production of a massive resonance decaying to a
    pair of Higgs bosons in the four b quark final state at the HL-LHC using the
    CMS Phase 2 detector. Tech. rep. CMS-PAS-FTR-18-003. Geneva: CERN,
    2018. URL: https://cds.cern.ch/record/2628598.

    QR CODE
    :::