| 研究生: |
蔡文傑 Wen-Chieh Tsai |
|---|---|
| 論文名稱: |
巨觀等向性混成岩製作表面影像與力學性質 The fabrication,surface images and mechanical properties of macroscopically isotropic Mélanges |
| 指導教授: |
田永銘
Yuan-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 體積比 、巨觀等向性 、併構岩 、混成岩 |
| 外文關鍵詞: | Mélanges, Macroscopically isotropic, volumetric fraction, bimrock |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
混成岩為泥質填充物夾著許多外來岩塊或岩屑所組成,本文利用人造方式製作具有不同體積比之『巨觀等向性』混成岩試體,以探討混成岩中岩塊體積比例對整體力學性質之影響。因岩塊體積比是最常用來估計混成岩整體工程性質的參數,本文利用旋轉式掃描器快速擷取試體表面影像,再以中分法(Dividing Method)及SimplePCI影像處理法估算岩塊之體積比,並與傳統之單位重法加以比較,結果顯示,在中、高體積比(31%、46%、58%)時,皆有良好之一致性,在低體積比(16%)時影像處理法則提供較單位重法為佳的精度,且量測結果不受試體內部含水狀態之影響。
本文並以幾何理論推導單一粒徑岩塊與平面剖面之外視粒徑分佈及圓柱剖面之等值平均粒徑分佈關係。從本研究所建立之前述關係可由試體內部岩塊之粒徑分佈推求平面剖面及圓柱剖面之粒徑分佈。亦可由平面剖面及圓柱剖面之粒徑分佈反求試體內部岩塊之粒徑及其分佈。
圍壓由低至高增加,材料之破壞機制由岩塊與基質材料界面之破壞轉由岩塊與基質材料的強度來控制。混成岩在岩塊體積體比(0~46%)時,凝聚力隨體積比之增加而減少;內摩擦角隨體積比之增加而增加。利用微分模式預測楊氏模數與體積比之關係,在圍壓12MPa時經與實驗結果比較趨勢相當吻合,且楊氏模數與體積比之關係接近Reuss下限邊界。
Abstract
Mélanges - A mappable body of rock that includes fragments and blocks of all size, both exotic and native, embedded in a fragmented and generally sheared matrix. Although Mélanges or bimrocks are heterogeneous in microscopic scale, it is more practical to replace them by “equivalent homogeneous medium” in most geotechnical engineering scale. The preparation technique for synthetic mélanges which overall mechanical properties are isotropic has been developed. According to the concept of stereology, this thesis used a rotary scanner to catch the cylindrical surface images of mélange or bimrocks. The thesis uses cylindrical surface and planar images to measure the block volumetric fraction. The block volumetric fraction measured by Simple PCI , Dividing Method and unit weight method are similar to actual volumetric fraction (31%, 46%,58%). Simple PCI and Dividing Method can accurately measure the low block volumetric fraction (16%). The image process method of measuring block volumetric fraction is stable when the water content of specimen changes.
In addiction, this thesis derived relationships between the apparent block diameter and the cumulative block apparent percentage for cylindrical surface and planar images. Furthermore, actual block size and distribution can also be measured by this concept.
Failure mechanism of Macroscopically isotropic Mélanges is from block-matrix contact failure to both matrix and block compression with confining pressure increasing. Increasing the block volumetric fraction (0~46%) decreased the cohesion and increased the internal friction of Mélanges. Using Differential scheme to predict the relationship between tangent Young’s modulus and block volumetric fraction, at confining pressure is 12MPa the tendency of test is similar to the Differential scheme and the value is close to Reuss lower bound.
1. 王仁正,「人造互層岩體之力學行為」,碩士論文,國立中央大學土木工程研究所,中壢(1995)。
2. 宋銘峰,「人造軟弱互層岩體之製作及其界面力學性質量測」,碩士論文,國立中央大學土木工程研究所,中壢(1998)。
3. 林俊雄,「離心模型黏土試體之準備與強度標定」,國立中央大學土木工程研究所,中壢(1995)。
4. 洪如江,「台東利吉混成岩及無根山與富里斷層」,地工技術,工程地質之影像,第77-86頁(1999)。
5. 林銘郎、鄭富書、翁作新、洪如江,「台灣斷層泥之特性及斷層泥力學評估的新發展」,地工技術,第79期,第91-106頁(2000)。
6. 吳維毓,「台灣南部恆春半島墾丁混同層之構造分析研究」,碩士論文,國立台灣大學地質研究所,台北(1997)。
7. 孫思優,「岩石三軸室應變量測改進」,碩士論文,國立中央大學土木工程研究所,中壢(2002)。
8. 劉哲明,「混成岩模型試體製作及體積比量測」,碩士論文,國立中央大學土木工程研究所,中壢(2002)。
9. Akesson, U., Stigh, J., Lindquist, J. E., and Goransson,M., “The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy.” Engineering Geology, Vol. 68, pp.275-288(2003)
10. ISRM, Rock Characterization Testing and Monitoring, ed. by Brown E. T., Pergamon Press, Oxford(1981).
11. Farahat, A. M. ,Kawakami, M. , and Tanabe, T. , “Experimental observation of microstructural behavior of concrete,” Journal of Material in Civil Engineering, Vol.7, No.2, pp.87-95 (1995).
12. Lindquist, E. S., “The strength and deformation properties of melange,” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley(1994).
13. Lindquist, E. S., “The mechanical properties of a physical model mélange,” 7th International IAEG Congress, Lisboa, Portugal, pp. 819-850(1994).
14. Lindquist, E. S., Goodman, R. E. , “Strength and deformation properties of a physical model melange,” Proceedings of the 1st North American Rock Mechanics Symposium, Texas, American, pp.843-850(1994).
15. Medley, E. W., “The Engineering characterization of malanges and similar block-in-matrix rock(bimrock) ,” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley(1994).
16. Medley, E. W., “Using stereological method to estimate the volumetric proportions of blocks in melanges and similar block in matrix rock (bimrocks),” 7th International IAEG Congress, Lisboa, Portugal, pp. 1031-1040 (1994).
17. Medly, E. W., Goodman, R. E. , “Estimating the block volumetric proportions of mélanges and similar block-in-matrix rocks (bimrocks),” Proceedings of the 1st North American Rock Mechanics Symposium, Texas, American, pp.851-858(1994).
18. Mehta, P.K. and Monteiro, P. J. M., Concrete: Structure, Properties, and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey(1993).
19. Ramamurthy, T., “Shear strength response of some geological materials intriaxial compression,” Int. J. Rock Mech. Min. Sci., Vol. 38, pp. 683 –697(2001).
20. Shakoor, A. and Cook, B. D., “The effect of stone content, size, and shape on the engineering properties of a compacted silty clay, Bulletin of the Association of Engineering Geologist, 27 , pp.245-253(1990).
21. Tien, Y. M. and Tsao, P. F., ”Preparation and mechanical properties of artificial transversely isotropic rock,” Int. J. Rock Mech. Min. Sci., Vol. 37, pp. 1001 –1012 (2000).