| 研究生: |
邱俊智 Chun-Chih Chiu |
|---|---|
| 論文名稱: |
非晶質吸光區與累增區分離之類超晶格累崩光二極體 Amorphous Separated Absorption and Multiplication Superlattice-like Avalanche Photodiodes(Amorphous SAM-SAPD’s) |
| 指導教授: |
洪志旺
Jyh-Wong Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 光偵測器 、超晶格 、雪崩 、累增 、累崩 、非晶質 、光二極體 |
| 外文關鍵詞: | amorphous, avalanche, SAM-APD, photodoide, multiplication |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文的研究主題是探討及比較在非晶質類超晶格(superlattice-like)結構的累增區中,分別加入p-n (a-SiC)、p-i-n (a-SiC)或p-i(a-SiC)-i-n(a-Si)非晶質複層的各種非晶質吸光區累增區分離的類超晶格累崩光二極體(非晶質SAM-SAPD)的主要光電特性,例如:光/暗電流曲線,光增益,發射雜訊,及過剩雜訊因子等等。這些元件都有相當高的光增益,但其中以加入p-i(a-SiC)-i-n(a-Si)非晶質複層的元件具有最高的光增益與最低的過剩雜訊。這些實驗結果顯示提高累增區中的電場及利用適當的能隙帶不連續性可使元件具有較佳的光電特性。
Abstract
In this study, several kinds of amorphous separated absorption and multiplication superlattice-like avalanche photodiode (amorphous SAM-SAPD), each with additional p-n (a-SiC), p-i-n (a-SiC), or p-i(a-SiC)-i-n(a-Si) amorphous silicon-alloy layers in substage of superlattice (SL) for multiplication, had been designed and fabricated successfully. Also their characteristics such as dark and photo I/V curves, optical gains, relative spectral responses, shot noises and excess noise factors had been systematically measured, calculated, and compared. All of these devices had rather high optical gain, and the device with the additional p-i(a-SiC)-i-n(a-Si) amorphous layers in substage of SL(named Device C) had the highest optical gain and the lowest excess noise. These results indicated that using high electric-field and proper band-edge discontinuity in the multiplication region of a SAM-SAPD could improve the device optical gain and excess noise simultaneously.
References
[1] Pallab Bhattacharya " Semiconductor Optoelectronic Devices (second edition)," pp. 373-374, 1997.
[2] R. J. McIntyre," Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices, vol. ED-13, pp. 164-168, 1966.
[3] G. E. Bulman, V. M. Robbins, K. F. Brennan, K. Hess, and G. E. Stillman, "Experimental determination of impact ionization coefficients in (100) GaAs," IEEE Electron Device Lett., vol. EDL-4, pp. 181-185, 1983.
[4] K. Brennan, "Theory of electron and hole impact ionization in quantum well and staircase superlattice avalanche photodiode structures," IEEE Trans. Electron Devices, vol. ED-32, pp. 2197-2205, 1985.
[5] H. Blauvelt, S. Margalit, and A. Yariv, "Single-carrier-type dominated impact ionisation in multilayer structures," Electron. Lett., vol. 18, pp. 375-376, 1982.
[6] K. Brennan, "Theory of the GaInAs/A1InAs-doped quantum well APD: A new low-noise solid-state photodetector for lightwave communication systems, " IEEE Trans. Electron Devices, vol. ED-33, 1653-1695, 1986.
[7] K. Brennan, "Theory of the doped quantum well superlattice APD: A new solid state photomultiplier," IEEE J. Quantum Electron., vol. QE-22, pp. 1999-2016, 1986.
[8] K. Brennan, "The pn junction quantum well APD: A new solid state Photodetector for lightwave communications systems and on-chip detector applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 782-792, 1987.
[9] K. Brennan, "The p-n heterojunction quantum well APD: A new high-gain low-noise high-speed photodetector suitable for lightwave communications and digital applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 793-803, 1987.
[10] K. Brennan, "Optimization and modeling of avalanche photodiode structures: Application to a new class of superlattice photodetectors, the p-i-n, p-n homojunction, and p-n heterojunction APD''s," IEEE Trans. Electron Devices, vol. ED-34, pp. 1658--1669, 1987.
[11] F. Capasso, "Physics of avalanche photodiodes," in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Eds. Lightwave Communications Technology, W. T. Tsang, Ed. New York:Academic, 1985, vol. 22, part D, pp. 1-172.
[12] F. Osaka, T. Mikawa and O. Wada, “ Electron and hole impact ionization rates in InP/Ga0.47In0.53As superlattice,” IEEE J. Quantum Electron., vol. QE-22, pp. 1986-1991,1996.
[13] K. Brennan, K. Hess and F. Capasso, “Physics of the enhancement of impact ionization in multiquantum well structures” Appl. Phys. Lett., vol. 50, no. 26, pp. 1897-1899, 1987.
[14] W. Maes, K. De Meyer and R. Van Overstraeten, “Impact ionization in silicon: a review and update,” Solid-State Electronics, vol. 33, no. 6, pp. 705-718, 1990.
[15] K. M. Van Vliet, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part I: One-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 746-751, 1979.
[16] K. M. Van Vliet, A. Friedmann, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part II: Two-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 752-764, 1979.
[17] R. S. Fyath, J. J. O''Reilly, "Multilayer APDs producing up to two impact ionisations per carrier per stage: Optical receiver performance analysis," IEE Proc., vol. 135, Pt. J, pp. 101-105, 1988.
[18] P. A. Wolff, Physics Review, vol. 95, pp. 1415, 1945
[19] NAGIB Z. HAKIM, BAHAA E.A SALEH and MALVIN C. TEICH, follow, IEEE “Generalized excess noise factor for APD of arbitrary structure, ” IEEE Trans. Electron Devices. vol. 37, NO 3, march, 1990.
[20] F. Capasso, W. T. Tsang, and G. F. Williams, “Staircase solid state photomultipliers and avalanche photodiodes with enhanced ionization rate ratio,” IEEE Trans. Electron Devices, vol. ED-30, pp. 381-390, 1982.
[21] F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. P. Williams, “Enhancement of electron impact ionization in superlattice: A new avalanche photodiode with large ionization rates ratio,” Appl. Phys. Lett., vol. 40, pp. 38-40, 1982.
[22] F. Capasso, “The channeling avalanche photodiode: A novel ultra low noise interdigitated p-n junction detector,” IEEE Trans. Electron Devices, vol. ED-29, pp. 1388-1395, 1982.
[23] G. F. William, F. Capasso, and W. T. Tsang, “The graded bandgap multiplayer avalanche photodiode: A new low noise detector,” IEEE Electron Devices Lett., vol. EDL-3, pp. 71-73, 1982.
[24] J. W. Hong, W. L. Laih, Y. W. Chen, Y. K. Fang, C. Y. Chang and J. Gong, "Optical and noise characteristics of amorphous Si/SiC superlattice reach-through avalanche photodiode," IEEE Trans. Electron Devices, vol. ED-37, no.8, pp.1804-1809, 1990.
[25] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “III-V compound semi-conductor devices: optical detectors,” IEEE trans. Electron Devices, vol. ED-31, pp. 1643-1655, 1984.
[26] R. Chin, N. Holonyak, G. E. Stillman, J.Y. Tang, and K. Hess, “Impact ionization in multilayered heterojunction structures,” Electron. Lett., vol. 16, pp. 467-469, 1980.
[27] Y. Okayasu, K. Fukui, and M. Matsumura, “Observation of valance-band discontinuity of hydrogenerated-amorphous Si/SiC heterojunction by photocurrent-voltage measurements ” Appl. Phys. Lett., vol. 50, pp. 248-249, 1987.
[28] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa "Amorphous silicon-carbide thin-film light emittingdDiode", Optoelectronics Devices and Technologies, Vol. 1, No. 1, p. 67-84, 1986.
[29] Rong-Hwei Yeh, "Green-blue porous silicon light-emitting diode", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
[30] Yung-Hung Wu, "Optoelectronic characteristics of a-SiC:H-based p-i-n thin-film LEDs having a thin Mo buffer layer in contact with p-a-Si:H", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
[31] K. Tanaka, Glow-discharge Hydrogenated Amorphous Silicon, Chap. 3, KTK Scientific Publishers, 1989.
[32] J. N. Hollenhorst, "A theory of multiplication noise," IEEE Trans. Electron Devices. vol. 37, pp. 781-788, 1990.