| 研究生: |
陳慶鴻 Ching-Hong Chen |
|---|---|
| 論文名稱: |
(100)矽基板上的氮化物二維電洞氣 Nitride two-dimensional hole gas on Si (100) substrate |
| 指導教授: | 賴昆佑 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | (100)矽基板 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第三代半導體氮化鎵生長於(111)面矽基板,因兩者晶格匹配度較高,所以可利用低溫成核層成長單晶結構,是業界常用規格,用於製造半導體功率元件、射頻元件和LED等;(100)面的矽基板,因其結構對稱特性,很適合用於製造COMS元件,然而將氮化鎵生長於(100)矽基板是相當不易的事情,因為其晶格差異(lattice mismatch)相當大,雖然已有許多實驗室透過某些方法比如基板接合法(wafer bonding)得到品質不錯的氮化鎵,但其製作過程相當繁瑣,所以簡化過程仍是大部分實驗所追求的方向。
二維電洞氣(two dimensional hole gas, 2DHG)可應用於氮化物電子元件。本實驗利用BN做為磊晶緩衝層,在Si(100)基板依序成長BN、GaN、AlGaN,並藉由霍爾量測確認電洞訊號,能帶模擬也可得到2DHG的結果。在加入AlN中間層後,拉曼量測顯示明顯的GaN訊號,但SEM表面的觀察結果是相當粗糙,若將AlN、GaN去除,直接將AlGaN成長於BN/Si(100)表面,可以得到平坦的表面、並維持2DHG結構。
The third-generation semiconductor GaN is generally grown on the substrate of Si(111). This is due to relatively small lattice mismatch between GaN and Si(111), comparing to the case on Si(100). GaN-on-Si is commonly used for power devices, radio frequency devices and LEDs. Si(100) substrate is very suitable for the manufacture of CMOS devices due to its mature fabrication in IC industry. However, growing GaN on Si(100) substrates is quite difficult because of the high lattice mismatch. Although GaN and Si(100) can be combined by wafer bonding, the production process is quite cumbersome. Direct growth of GaN on Si(100) can benefit the integration of GaN devices and CMOS technology.
Two dimensional hole gas (2DHG) can be used for GaN electronic devices. In this study, AlGaN/GaN was grown on a (100) silicon substrate, with BN as the nucleation layer. We confirm the 2DHG formation by Hall measurements, and the structure is verified by band diagram simulation. After adding a thin AlN layer below GaN can produce a strong Raman signal of GaN, but the surface becomes quite rough under scanning electron microscopy. It is found that removing the layers of GaN and AlN, and direct growth of AlGaN/BN on Si(100) can maintain the 2DHG structure and flat surface.
[1] A Dadgar, F Schulze, M Wienecke, A Gadanecz,J Bläsing, P Veit, T Hempel, A Diez, J Christen and A Krost. “Epitaxy of GaN on silicon—impact of symmetry and surface reconstruction.” New Journal of Physics 9,389 (2007).
[2] https://www.el-cat.com/silicon-properties.htm. “Properties of silicon and silicon wafers.” EL-CAT Inc.
[3] Yuxia Feng, Xuelin Yang, Zhihong Zhang, Duan Kang, Jie Zhang, Kaihui Liu,Xinzheng Li, Jianfei Shen, Fang Liu, Tao Wang, Panfeng Ji, Fujun Xu, Ning Tang,Tongjun Yu, Xinqiang Wang, Dapeng Yu, Weikun Ge, and Bo Shen . “Epitaxy of Single-Crystalline GaN Film on CMOS-Compatible Si(100) Substrate Buffered by Graphene.” Adv. Funct. Mater. 1905056(2019).
[4] Tanakorn Wonglakhon and Dirk Zahn. “Interaction potentials for modelling GaN
precipitation and solid state polymorphism.” J. Phys.: Condens. Matter 32 205401(2020).
[5] Hadis Morkoc. Handbook of Nitride Semiconductors and Devices. (2008).
[6] H. X. Jiang and J. Y. Lin. “Hexagonal boron nitride for deep ultraviolet photonic devices.” Semicond. Sci. Technol. 29, 084003 (2014).
[7] Yasuyuki Kobayashi, Kazuhide Kumakura,Tetsuya Akasaka & Toshiki Makimoto.” Layered boron nitride as a release layer for mechanical transfer of GaN-based devices.” Nature. 484,223–227 (2012).
[8] H. Koga, Y. Nakamura, S. Watanabe and T. Yoshida. “Molecular dynamics study of deposition mechanism of cubic boron nitride.” Sci. Technol Adv.Mater. 2 349(2001).
[9] Donald A. Neamen.” Semiconductor Physics and Device:Basic Principles.” The McGraw-Hill Companies. Fourth Edition.
[10] Kexiong Zhang, Masatomo Sumiya, Meiyong Liao, Yasuo Koide & Liwen Sang. “P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas.” Scientific Reports 6, 23683 (2016).
[11] Zexuan Zhang, Jimy Encomendero, Reet Chaudhuri,Yongjin Cho,Vladimir Protasenko, Kazuki Nomoto,Kevin Lee, Masato Toita,Huili Grace Xing and Debdeep Jena. “Polarization-induced 2D hole gases in pseudomorphic undoped GaN/AlN heterostructures on single-crystal AlN substrates.” Appl. Phys. Lett. 119, 162104 (2021).
[12] R. Lingaparthi, N. Dharmarasu, and K. Radhakrishnan. “Origin of the two-dimensional hole gas and criteria for its existence in the III-nitride heterostructures.” Appl. Phys. Lett. 122, 172103 (2023).
[13] Uiho Choi, Donghyeop Jung, Kyeongjae Lee, Taemyung Kwak, Taehoon Jang,Yongjun Nam, Byeongchan So, and Okhyun Nam. “The Effect of AlN Buffer Layer on AlGaN/GaN/AlN Double-Heterostructure High-Electron-Mobility Transistor.” Phys. Status Solidi, 217, 1900694(2019).
[14] Chuang-Yuan Chiu. “Growth of High-Quality AlN Via Pulsed-Flow MOCVD.” Master's thesis. National Central University. (2020).
[15] Liu Tang, Bo Tang, Hong Zhang, and Yinmei Yuan. “Review—Review of Research on AlGaN MOCVD Growth.” ECS J. Solid State Sci. Technol. 9 024009(2020).
[16] W. Liu,J. J. Zhu,D. S. Jiang,and H. Yang. “Influence of the AlN interlayer crystal quality on the strain evolution of GaN layer grown on Si(111).” Applied Physics Letters 90, 011914 (2007)
[17] Chun-Pin Huang, Muzafar Ahmad Rather, Chien-Ting Wu, Ravi Loganathan,Ying-Hao Ju, Kun-Lin Lin,Jen-Inn Chyi, and Kun-Yu Lai. “Crystal Transformation of Cubic BN Nanoisland to Rhombohedral BN Sheets on AlN for Deep-UV Light-Emitting Diodes.” ACS Appl. Nano Mater. 5285–5290(2020).
[18] Atsushi Tomita,Takumi Miyagawa,Hideki Hirayama,Yuusuke Takashima,Yoshiki Naoi&Kentaro Nagamatsu. “Investigation of V/III ratio dependencies for optimizing AlN growth during reduced parasitic reaction in metalorganic vapor phase epitaxy.” Scientific Reports 13,3308 (2023).
[19] Hyung-Seok Lee; Kevin Ryu; Min Sun; Tomas Palacios. “Wafer-Level Heterogeneous Integration of GaN HEMTs and Si (100) MOSFETs”. IEEE ELECTRON DEVICE LETTERS. Volume:33, Issue:2. (2012).
[20] Stacia Keller, Haoran Li, Matthew Laurent, Yanling Hu, Nathan Pfaff,
Jing Lu, David F Brown, Nicholas A Fichtenbaum, James S Speck,
Steven P DenBaars and Umesh K Mishra. “Recent progress in metal-organic chemical vapor deposition of (0001 ̅) N-polar group-III nitrides.” Semicond. Sci. Technol. 29 113001. (2014).
[21] Ashwani Kumar, Maria Merlyne De Souza. “Modelling the threshold voltage of p-channel enhancement-mode GaN heterostructure field-effect transistors.” IET Power Electron. Vol. 11 Iss. 4, pp. 675-680(2018).