跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭于聖
Yu-Sheng Guo
論文名稱: 一步驟反溶劑法製備高品質的鈣鈦礦膜的策略
指導教授: 吳春桂
Chun-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 128
中文關鍵詞: 鈣鈦礦太陽能電池反溶劑
外文關鍵詞: Perovskite, Solar Cells, Anti-solvent
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦太陽能電池(Perovskite solar cells,簡稱PSCs)的鈣鈦礦膜與電洞傳遞層(Hole transport layer,簡稱HTL)界面的缺陷會導致鈣鈦礦膜吸光產生的電子電洞無法順利傳遞出去,而且鈣鈦礦膜的晶界容易被水降解,使PSCs元件的光電轉換效率和穩定性變差。本研究透過在反溶劑氯苯(Chlorobenzene,簡稱CB)中添加Bicyclopentadithiophene衍生物(簡稱IN-BCDT系列),共有6個分子。分別是IN-BCDT-8及在IN-BCDT-8的Indene分子上引入Cl、Br而形成INCl-BCDT-8和INBr-BCDT-8;再將IN-BCDT-8、INCl-BCDT-8和INBr-BCDT-8的正辛基改為2-乙基己基,形成IN-BCDT-b8和INCl-BCDT-b8和INBr-BCDT-b8。以這六個材料所修飾的鈣鈦礦膜分別稱為Psk@8、Psk@Cl-8、Psk@Br-8、Psk@b8、Psk@Cl-b8和Psk@Br-b8,未添加修飾劑的鈣鈦礦膜稱為Psk@CB。其中,以Psk@Cl-b8和Psk@Br-b8為吸收層所組裝的元件的光電轉換效率最高分別可達20.51%和21.69%,比以Psk@CB為吸收層所組裝的元件的19.02%增加了8%和14%。從FT-IR穿透光譜可以看到INCl-BCDT-b8的氰基和羰基的訊號峰在添加PbI2後分別往低波數位移11 cm-1和12 cm-1,而INBr-BCDT-b8的氰基和羰基的訊號峰則在添加PbI2後都往低波數位移28 cm-1,表示這兩個分子的氰基和羰基將其上未鍵結的電子與鈣鈦礦膜中配位未飽和的Pb2+配位,而且INBr-BCDT-b8可以與更多的未鍵結Pb2+配位,因此SEM表面形貌看到Psk@Br-b8晶粒最大且平整,增加所組裝的PSC元件的Voc值(從1.03 V增加至1.10 V)和FF值(從73%提高至77%)。由於INBr-BCDT-b8中噻吩硫上的未定域電子增加鈣鈦礦膜的導電度(從1.69 x 10-2 mS cm-1增大至2.32 x 10-2 mS cm-1),Psk@Br-b8上沉積Spiro-OMeTAD膜的TRPL圖可以看到激子半生期較Psk@CB短,表示INBr-BCDT-b8可以幫助電洞更快地從鈣鈦礦膜傳遞至電洞傳遞層。而且分子上的烷基可以增加鈣鈦礦膜的疏水性,Psk@Br-b8的水接觸角加至86.5 o比Psk@CB的44.9 o大。使所組裝Psc元件的長時間穩定性較好,以Psk@Br-b8所組裝的元件在手套箱未封裝經80天後仍可維持原效率的91%;相同條件下,以Psk@CB所組裝的元件僅可維持原效率的77%。


    The interface defects of perovskite solar cells (PSCs) will cause serious problems, such as the carriers trapping and absorber layer degrading by water, which deteriorate the power conversion efficiency and stability of the PSCs. In this study, by adding bicyclopentadithiophene derivatives (abbreviated as IN-BCDT series) to the chlorobenzene (CB) anti-solvent in the processes for preparing perovskite layer. IN-BCDT series contain 6 molecules:IN-BCDT-8, INCl-BCDT-8, INBr-BCDT-8, IN-BCDT-b8, INCl-BCDT-b8, and INBr-BCDT-b8. The perovskite films prepared by CB containing IN-BCDT series are named as Psk@8, Psk@Cl-8, Psk@Br-8, Psk@b8, Psk@Cl-b8, and Psk@Br-b8, respectively. Perovskite films fabricated form pure CB anti-solvent was called Psk@CB. The power conversion efficiency of the PSCs based on Psk@Cl-b8 and Psk@Br-b8 absorbers reach the highest values of 20.51% and 21.69%, respectively, which is higher than that (19.02%) of PSCs assembled with Psk@CB absorber (8% and 14% increasing). FT-IR transmission spectra show the absorption peaks of the cyano group and carbonyl group of INCl-BCDT-b8 shifted to lower wavenumbers (11 cm-1 and 12 cm-1 lower) when it was mixed with PbI2. When INBr-BCDT-b8 was mixed with PbI2, the absorption peaks of cyano and carbonyl groups red-shifted even bigger (28 cm-1), indicating that both cyano and carbonyl group of these two molecules can coordinate with uncoordinate Pb2+ in perovskite and the bonding between INBr-BCDT-b8 Pb2+ is stronger. SEM surface morphology shows that Psk@Br-b8 is a flat film with the largest size, which increases the Voc of the corresponding PSC (from 1.03 V for PSC based on Psk@CB absorber to 1.10 V) and FF value (from 73% to 77%) as well as the conductivity (from 1.69 x 10-2 mS cm-1 to 2.32 x 10-2 mS cm-1) of the provekite films. The TRPL data of the Spiro-OMeTAD/ Psk@Br (Spiro-OMeTAD film deposited on Psk@Br) show the exciton half-lifes is shorter than that of Spiro-OMeTAD/Psk@CB, indicating that INBr-BCDT-b8 can extract holes from perovskite film and transport to anode faster. Moreover, the alkyl group on the molecule can increase the hydrophobicity of the perovskite film, the water contact angle of Psk@Br-b8 is 86.5o which is larger than that (44.9o) of Psk@CB. The PSC based on Psk@Br-b8 absorber can maintain 91% of its original efficiency after 80 days in the glove box without packaging. Under the same conditions, PSC assembled with Psk@CB absorber losts 23% of the original efficiency.

    摘要 VI Abstract VIII Graphical Abstract X 謝誌 XI 目錄 XII 圖目錄 XVIII 表目錄 XXIV 第一章、 緒論 1 1-1、前言 1 1-2、鈣鈦礦太陽能電池 3 1-2-1.鈣鈦礦的結構 3 1-2-2.鈣鈦礦太陽能電池(PSC)的架構 4 1-2-3.一般式鈣鈦礦太陽能電池的工作原理 5 1-3、鈣鈦礦太陽能電池的研究歷史 6 1-3-1.第一篇將鈣鈦礦材料應用於太陽能電池的文獻 6 1-3-2.將固態電解質應用於鈣鈦礦太陽能電池 7 1-3-3.文獻中鈣鈦礦太陽能電池的最高光電轉換效率 8 1-4、製備鈣鈦礦膜的方法 9 1-4-1.一步驟合成法 (Single-step method) 10 1-4-2.兩步驟合成法 (Two-step method) 10 1-4-3.一步驟反溶劑處理法(one-step anti-solvent engineering method) 11 1-5、一般式PSC面臨的挑戰 13 1-5-1.一般式PSC鈣鈦礦膜的晶界 13 1-5-2.一般式PSC鈣鈦礦膜的缺陷 14 1-6、一般式PSC中鈣鈦礦膜的修飾方法 14 1-6-1.在鈣鈦礦前驅溶液中加入添加劑製備鈣鈦礦膜 14 1-6-2.在鈣鈦礦膜上沉積一層修飾膜 17 1-6-3.在反溶劑中加入添加劑製備經修飾的鈣鈦礦膜 20 1-7、研究動機 28 第二章、 實驗部分 30 2-1、實驗藥品及儀器設備 30 2-1-1.藥品 30 2-1-2.儀器設備 32 2-2、 一般式鈣鈦礦太陽能電池之電池組裝步驟 33 2-2-1.藥品配製 33 2-2-2.元件組裝步驟 34 2-3、儀器原理、樣品製備及量測 38 2-3-1.熱蒸鍍系統(Thermal evaporation system) 38 2-3-2.太陽光模擬器及光電轉換效率量測(Solar Simulator, DENSO KXL-500F及Keithley 2400 ) 39 2-3-3.太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficiency (IPCE), Enlitech PVCS-I) 40 2-3-4.接觸角量測儀(Contact angle, Grandhand Ctag01) 42 2-3-5.超高解析場發射掃描式電子顯微鏡 (Ultra-High Resolution FE-SEM,Nova NanoSEM-230) 42 2-3-6.X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 44 2-3-7. 化學分析電子能譜儀(Electron Spectroscopy for Chemical Analysis,ESCA) 45 2-3-8.光激發螢光光譜儀(Photoluminescence Spectrometer, Uni think Uni-RAM) 47 2-3-9.空間電荷限制電流量測 48 2-3-10.傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer, Jasco 4100) 49 第三章、 結果與討論 51 3-1、將IN-BCDT-系列的分子加入反溶劑中製備鈣鈦礦膜作為吸光層組裝成元件的光伏表現 51 3-1-1.篩選添加不同BCDT系列分子至反溶劑修飾鈣鈦礦膜組裝成元件的光伏表現 51 3-1-2.篩選不同濃度INBr-BCDT-b8(CB)製備Psk@Br-b8組裝成元件的光伏表現 54 3-1-3.添加INBr-BCDT-b8至不同溶劑做為反溶劑製備Psk@Br-b8組裝成元件的光伏表現 55 3-2、將IN-BCDT-系列的分子加入反溶劑中製備鈣鈦礦膜做為吸光層組裝成元件的IPCE表現 57 3-3、將IN-BCDT系列的分子加入反溶劑中製備鈣鈦礦膜所組裝成元件的長時間穩定性 59 3-4、將IN-BCDT系列的分子加入反溶劑中製備鈣鈦礦膜沉積在TiO2膜上的SEM表面形貌和剖面形貌圖 60 3-5、將IN-BCDT系列的分子加入反溶劑中製備鈣鈦礦膜的XRD圖 63 3-6、將IN-BCDT系列的分子加入反溶劑中製備鈣鈦礦膜的前置軌域能階圖 64 3-7、將IN-BCDT系列的分子加入反溶劑中製備鈣鈦礦的水接觸角圖 69 3-8、將IN-BCDT系列的分子加入反溶劑中製備鈣鈦礦膜的光致螢光及時間解析光致螢光光譜 70 3-9、將IN-BCDT系列的分子加入反溶劑中製備鈣鈦礦膜的導電度 78 3-10、Psk@CB、Psk@Cl-b8和Psk@Br-b8的電洞遷移率、電子遷移率及缺陷密度 79 3-11、PbI2、INBr-BCDT-b8、 INBr-BCDT-b8+PbI2、INCl-BCDT-b8 和 INCl-BCDT-b8+PbI2的IR光譜圖 84 3-12、Psk@CB、Psk@Cl-b8及Psk@Br-b8之XPS能譜圖 86 3-13、Psk@Br-b8沉積在TiO2膜上的表面EDS元素Mapping圖 88 3-14、添加不同BCDT系列分子至反溶劑修飾鈣鈦礦膜組裝成元件的最高光電轉換效率(Max PCE)與性質比較 89 第四章、 結論 91 參考文獻 93 附錄 99 附錄1.以Psk@CB、Psk@Cl-b8或Psk@Br-b8做為吸收層組裝之最高效率元件的穩態電流密度及光電轉換效率輸出 99 附錄2.以Psk@CB、Psk@Cl-b8或Psk@Br-b8做為吸收層組裝之最高效率元件的暗電流 100 附錄3.以Psk@CB、Psk@Cl-b8或Psk@Br-b8做為吸收層組裝之最高效率元件的遲滯因子 101

    【1】IEA (2020), World Energy Outlook 2020, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2020 (2020/10/13)
    【2】Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc. 2009, 131, 6050-6051
    【3】Best Research-Cell Efficiency Chart (nrel.gov) (2022/06/17)
    【4】https://www.researchgate.net/figure/Perovskite-generic-crystal-structure-The-cubic-crystal-structure-of-3Dperovskite_fig3_325218134 (2018/05/18)
    【5】Da-Xing Yuan, Adam Gorka, Mei-Feng Xu, Zhao-Kui Wang and Liang-Sheng Liao, “Inverted planar NH2CH=NH2PbI3 Perovskite Solar Cells with 13.56% Efficiency Via Low Temperature Processing”, Phys. Chem. Chem. Phys. 2015, 17, 19745-19750.
    【6】Minjin Kim, Gi-Hwan Kim, Tae Kyung Lee, In Woo Choi, Hye Won Choi, Yimhyun Jo, Yung Jin Yoon, Jae Won Kim, Jiyun Lee, Daihong Huh, Heon Lee, Sang Kyu Kwak, Jin Young Kim and Dong Suk Kim, “Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells”, Joule, 2019, 3, 2179-2192
    【7】Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Gra¨tzel and Nam-Gyu Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Sci Rep, 2012, 2, 591.
    【8】Hanul Min, Do Yoon Lee, Junu Kim, Gwisu Kim, Kyoung Su Lee, Jongbeom Kim, Min Jae Paik, Young Ki Kim, Kwang S. Kim, Min Gyu Kim, Tae Joo Shin and Sang Il Seok, “Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 electrodes”, Nature, 2021, 598, 444-450.
    【9】Chien-Hung Chiang, Jun-Wei Lin and Chun-Guey Wu, “One-Step Fabrication of a Mixed-Halide Perovskite Film for a High-Efficiency Inverted Solar Cell and Module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
    【10】Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu and Sang Il Seok, “Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells”, Nat. Materials, 2014, 13, 897-903.
    【11】Manda Xiao, Fuzhi Huang, Wenchao Huang, Yasmina Dkhissi, Ye Zhu, Joanne Etheridge, Angus Gray-Weale, Udo Bach, Yi-Bing Cheng and Leone Spiccia, “A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cell”, Angew. Chem. Int. Ed. 2014, 126, 37, 10056-10061
    【12】Qi Wang, Bo Chen, Ye Liu, Yehao Deng, Yang Bai, Qingfeng Dong and Jinsong Huang, “Scaling Behavior of Moisture-Induced Grain Degradation in Polycrystalline Hybrid Perovskitethin Films”, Energy Environ. Sci, 2017, 10, 516−522.
    【13】Zhenyi Ni, Chunxiong Bao, Ye Liu, Qi Jiang, Wu-Qiang Wu, Shangshang Chen, Xuezeng Dai, Bo Chen, Barry Hartweg, Zhengshan Yu, Zachary Holman and Jinsong Huang, “Resolving Spatial and Energetic Distributions of Trap States in Metal Halide Perovskite Solar Cells”, Science, 2020, 367, 1352−1358.
    【14】Kyung Taek Cho, Yi Zhang, Simonetta Orlandi, Marco Cavazzini, Iwan Zimmermann, Andreas Lesch, Nouar Tabet, Gianluca Pozzi, Giulia Grancini and Mohammad Khaja Nazeeruddin, “Water-Repellent Low-Dimensional Fluorous Perovskite as Interfacial Coating for 20% Efficient Solar Cells”, Nano Lett., 2018, 18, 5467−5474.
    【15】Deyu Xin, Shujie Tie, Ruihan Yuan, Xiaojia Zheng, Jianguo Zhu and Wen-Hua Zhang, “Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecule”, ACS Appl. Mater. Interfaces, 2019, 11, 44233-44240.
    【16】Tian Yu Wen, Shuang Yang, Peng Fei Liu, Li Juan Tang, Hong Wei Qiao, Xiao Chen, Xiao Hua Yang, Yu Hou and Hua Gui Yang, “Surface Electronic Modification of Perovskite Thin Film with Water-Resistant Electron Delocalized Molecules for Stable and Efficient Photovoltaics”, Adv. Energy Mater. 2018, 8, 1703143-1703150.
    【17】Rui Wang, Jingjing Xue, Kai-Li Wang, Zhao-Kui Wang, Yanqi Luo, David Fenning, Guangwei Xu, Selbi Nuryyeva, Tianyi Huang, Yepin Zhao, Jonathan Lee Yang, Jiahui Zhu, Minhuan Wang, Shaun Tan, Ilhan Yavuz, Kendall N. Houk and Yang Yang, “Constructive Molecular Configurations for Surface-defect Passivation of Perovskite Photovoltaics”, Science, 2019, 366, 1509-1513
    【18】Fu Yang, Muhammad Akmal Kamarudin, Putao Zhang, Gaurav Kapil, Tingli Ma and Shuzi Hayase, “Enhanced Crystallization by Methanol Additive in Anti-solvent for Achieving High-quality MAPbI3 Perovskite Films in Humid Atmosphere”, ChemSusChem, 2018, 11, 14, 2348−2357.
    【19】Mohamed M. Elsenety, Anastasios Stergiou, Labrini Sygellou, Nikos Tagmatarchis, Nikolaos Balis and Polycarpos Falaras, “Boosting Perovskite Nanomorphology and Charge Transport Properties Via a Functional D–π-A Organic Layer at the Absorber/Hole Transporter Interface”, Nanoscale, 2020, 12, 15137-15149.
    【20】Mahmoud Samadpour, Arezo Golchini, Karim Abdizadeh, Mahsa Heydari, Mozhdeh Forouzandeh, Zahra Saki and Nima Taghavinia, “Modified Antisolvent Method for Improving the Performance and Stability of Triple-Cation Perovskite Solar Cells”, ACS Omega, 2021, 6, 172-179.
    【21】Jiahui Li, Xiaodong Hua, Fei Gao, Xiaodong Ren, Chaoqun Zhang, Yu Han, Yuanrui Li, Bonan Shi and Shengzhong Liu, “Green Antisolvent Additive Engineering to Improve the Performance of Perovskite Solar Cells”, J. Energy Chem. 2022, 66, 1-8.
    【22】Shakil N. Afraj, Arulmozhi Velusamy, Chung-Yu Chen, Jen-Shyang Ni, Yamuna Ezhumalai, Chun-Huang Pan, Kuan-Yu Chen, Shueh-Lin Yau, Heng-Liang Liu, Chien-Hung Chiang, Chun-Guey Wu and Ming-Chou Chen, “Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells”, J. Mater. Chem. A. 2022, 10, 11254-11267.
    【23】Yan-Duo Lin, Kun-Mu Lee, Bo-Yu Ke, Kai-Shiang Chen, Hao-Chien Cheng, Wei-Juih Lin, Sheng Hsiung Chang, Chun-Guey Wu, Ming-Chung Kuo, Hsin-Cheng Chung, Chien-Chun Chou, Heng-Yu Chen, Kang-Ling Liau, Tahsin J. Chow and Shih-Sheng Sun, “Rational Design of Cyclopenta[2,1-b;3,4-b’] dithiophene-bridged Hole Transporting Materials for Highly Efficient and Stable Perovskite Solar Cells”, Energy Technol, 2019, 7, 307-316.
    【24】Sanghyun Paek, Pascal Schouwink, Evangelia Nefeli Athanasopoulou, Kyung Taek Cho, Giulia Grancini, Yonghui Lee, Yi Zhang, Francesco Stellacci, Mohammad Khaja Nazeeruddin and Peng Gao, “From Nano to Micrometer Scale:The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells”, Chem. Mater. 2017, 29, 3490-3498.
    【25】Wang-Jae Chun, Akio Ishikawa, Hideki Fujisawa, Tsuyoshi Takata, Junko N. Kondo, Michikazu Hara, Maki Kawai, Yasumichi Matsumoto and Kazunari Domen, “Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods”, J. Phys. Chem. B. 2003, 107, 1798-1803.
    【26】Abraha Tadese Gidey, Elias Assayehegn and Jung Yong Kim, “Hydrophilic Surface-Driven Crystalline Grain Growth of Perovskites on Metal Oxides”, ACS Appl. Energy Mater. 2021, 4, 6923-6932.
    【27】Lisa Krückemeier, Benedikt Krogmeier, Zhifa Liu, Uwe Rau and Thomas Kirchartz, “Understanding Transient Photoluminescence in Halide Perovskite Layer Stacks and Solar Cells”, Adv. Energy Mater. 2021, 11, 2003489-2003507.
    【28】Chien-Hung Chiang, Chun-Wei Kan and Chun-Guey Wu, “Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO2 and SnO2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells”, ACS Appl. Mater. Interfaces. 2021, 13, 23606-23615.
    【29】Dong Yang, Ruixia Yang, Xiaodong Ren, Xuejie Zhu, Zhou Yang, Can Li and Shengzhong (Frank) Liu, “Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport”, Adv. Mater. 2016, 28, 5206-5213.
    【30】Dongqin Bi, Chenyi Yi, Jingshan Luo, Jean-David Décoppet, Fei Zhang, Shaik Mohammed Zakeeruddin, Xiong Li, Anders Hagfeldt and Michael Grätzel, “Polymer-Templated Nucleation and Crystal Growth of Perovskite Films for Solar Cells with Efficiency Greater than 21%”, Nat. Energy, 2016, 142, 1-5.
    【31】Lele Qiu, Kai Xing, Jian Zhang, Yulin Yang, Wei Cao, Xuesong Zhou, Ke Zhu, Debin Xia and Ruiqing Fan, “Two-Dimensional Metal–Organic Frameworks-Based Grain Termination Strategy Enables High-Efficiency Perovskite Photovoltaics with Enhanced Moisture and Thermal Stability”, Adv. Funct. Mater. 2022, 31, 2010368-2010378.
    【32】Shuang Yang, Shangshang Chen, Edoardo Mosconi, Yanjun Fang, Xun Xiao, Congcong Wang, Yu Zhou, Zhenhua Yu, Jingjing Zhao, Yongli Gao, Filippo De Angelis and Jinsong Huang, “Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts”, Science. 2019, 365, 473-478.

    QR CODE
    :::