跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁文安
Wen-An Liang
論文名稱: 低對流層氣膠之光達量測
Measurements of lower troposphere aerosol with depolarization lidar
指導教授: 倪簡白
J.B. Nee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 91
語文別: 中文
論文頁數: 58
中文關鍵詞: 氣膠沙塵暴光達
外文關鍵詞: dust, aerosol, lidar
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用光達(Lidar – Light Detection and Ranging)的技術,測量2002年8月到2003年1月間,10公里以下背景氣膠的背向散射比(Backscattering Ratio)、光學厚度與雲的分佈。10公里以下的氣膠背向散射比,在6 到8.5公里之間幾乎是定值,值約1.05;而10公里以下雲的分佈,主要分佈在3~4公里與8~9公里之間。另外,我們分析了1999年11月到2001年4月間所量測之5到10公里背景氣膠的消偏振率(Depolarization Ratio),其中春季為0.033,夏季為0.027,秋季為0.019,冬季為0.023。最後本論文介紹了以訊號分類的方式,討論本實驗室參與環保署2002年、2003年春季沙塵暴量測計畫的觀測結果。


    In this thesis, we showed the aerosol backscattering ratio, optical depth and the cloud distributions of the atmosphere below 10 km between August 2002 and January 2003 measured by NCU lidar system at ChungLi. The backscattering ratios of aerosol between 6 and 8.5 km were almost a constant about 1.05. The clouds lowered than 10 km were mainly distributed over 3 to 4 km and 8 to 9 km. The measurements of aerosol depolarization ratio between 5 and 10 km covering the period from November 1999 to April 2001 were analyzed and compared with humidity profiles obtained by CWB radiosonde datum. The average depolarization ratio at spring, summer, fall, and winter were 0.033, 0.027, 0.019, and 0.023 respectively. The results of the lidar measurements during the 2002 and 2003 Asia dust events were also presented.

    目錄 第1章 緒論………………………………………………1 1.1 大氣中的氣膠………………………………………1 1.1.1氣膠種類與化學組成…………………………… 1 1.1.2氣膠的各種分佈………………………………… 2 1.1.3氣膠的影響……………………………………… 5 1.2 沙塵暴概述…………………………………………7 1.2.1沙塵暴形成之條件與背景……………………… 8 1.2.2沙塵暴之分佈與傳送…………………………… 8 1.2.3沙塵暴的影響…………………………………… 10 1.3 研究主題……………………………………………11 第2章 光達原理與實驗設備……………………………12 2.1 光達方程式…………………………………………12 2.2 消偏振率之定義……………………………………15 2.3 光學厚度……………………………………………17 2.4 誤差分析……………………………………………18 2.4.1 訊號的噪音造成的誤差…………………………18 2.4.2 空氣背向散射系數造成的誤差…………………18 2.4.3 起始值造成的誤差………………………………19 2.4.4 Lidar Ratio所造成的誤差…………………19 2.4.5 其他誤差…………………………………………20 2.5 中央光達的系統設備………………………………21 第3章 低對流層氣膠的量測……………………………24 3.1背景氣膠的量測…………………………………… 24 3.1.1氣膠背向散射比………………………………… 25 3.1.2消偏振率………………………………………… 28 3.1.3氣膠光學厚度…………………………………… 30 3.1.4濕氣的影響……………………………………… 33 3.1.5討論……………………………………………… 39 3.2 沙塵暴期間之觀測…………………………………41 3.2.1討論……………………………………………… 43 3.2.2結論……………………………………………… 52 第4章 總結與未來展望…………………………………53 附錄:探空資料的相對濕度年平均……………………55 參考文獻…………………………………………………56

    Ackerman, F., Chung, H., “Radiative effects of airbone dust and regional energy budget at the top of the atmosphere,” Journal of Applied Meteorology 31, 223-233 (1992).
    Ackermann, J., “The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study,” J. Atmos. and Oceanic Tech. 15, 1043-1050 (1998).
    Cairo, F., G.D. Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of Various linear depolarization parameters measured by lidar,” Appl. Opt. 38, 4425-4432 (1999).
    Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen, D.J. Hofmann, “Climate forcing of anthropogenic aerosols,” Science 255, 423-430 (1992).
    Chen, W.N., Chiang, C.W., Nee, J.B., “Lidar ratio nd depolarization ratio for cirrus clouds,” Appl. Optics 41, 6470-6476 (2002).
    Cooper, D.W., Davis, J.W., Byers, R.L., “Measuremnets of depolarization by dry and humidified salt aerosols using lidar analogue,” Aeroosl Science 5, 117-123 (1974).
    Evans, K.D., Melfi, S.H., Ferrare, R.A., Whiteman, D.A., “Upper tropospheric temperature measurements with the use of a Raman lidar,” Appl. Optics 36, 2594-2602 (1997).
    Hair, J.W., Caldwell, L.M., Krueger, D.A., She, Chiao-Yao, “High-spectral-resolution lidar with iodine-vapor filters : measurement of atmospheric-state and aerosol profiles,” Appl. Optics 40, 5280-5294 (2001).
    Hanel, G., “The properties of atmospheric aerosols as functions of relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophy., 19, 73-188 (1976).
    Heitzenberg, J., “Fine particles in the global troposphere a review,” Tellus 41B, 149-160 (1993).
    Hofmann, D.J., “Twenty years of Balloon-Borne tropospheric aerosol measurements at Laramie, Wyoming,” J. Geophy. Res. Vol. 98, 12753-12766 (1993).
    Iwasaka, Y., Yamato, M., Iamasu, R., Ono, A., “Transport of Asian dust (Kosa) particles; importance of weak kosa events on the geochemical cycle of soil particles,” Tellus 40B, 494-503 (1988).
    Kotamarthi, V.R. and Carmichael, G.R., “A modeling study of the long range transport of Kosa using particle trajectory analysis,” Tellus 45B, 426-441 (1993).
    Kwon S.A., Iwasaka Y. and Shibata T., “Depolarization ratio of air molecules in the free troposphere Lidar measurement in spring 1994,” J. Geomag. Geoelectr. 48, 415-419 (1996).
    Kwon, S.A., Y. Iwasaka, T. Shibata and T. Sakai, “Vertical distribution of atmospheric particles and water vapor densities in the free troposphere: Lidar measurement in sprint and summer in Nagoya,” Japan, Atmos. Environ. 31, 1459-1465 (1997).
    Lenoble, J., “In: Deepak, A. (Ed), Atmospheric Radiative Transfer,” A. Deepak Publ., Hampton VA, USA (1993).
    Liu, Z., N. Sugimoto, and T. Murayama, "Extinction to backscatter ratio of Asian dust observed with high spectral resolution lidar and Raman lidar,” Appl. Opt. 15, 2760-2767 (2002).
    Klett, J.D., “Stable analytical inversion solution for processing lidar returns,” Appl. Optics 20, 211-220 (1981).
    Mischenko, M.I., Sassen, K., “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophysical Research Letter 25, 309-312 (1998).
    Murayama, T., H. Okamoto, N. Kaneyasu, H. Kamataki and K. Minra, “Application of lidar depolarization measurement in the atmospheric boundary layer: Effects of dust and sea-salt particles,” J. Geophy. Res. 104, 31781-31792 (1999).
    Pinnick, R.G., J.M. Rosen, and D.J. Hofmann, “Stratospheric aerosol measurements. III. Optical model calculations,” J. Atmos. Sci. 33, 304-313 (1976).
    Ramanathan, V., Crutzen, P.J., Kiehl, J.T., Rosenfeld, D., “Aerosols, climate, and the hydrological cycle.” Science 284, 2119-2114 (2001).
    Raes, F. Van Dingenen, R., Virgnati, E., Wilson, J., Putaud, J.-P., Seinfeld, J. H., Adams, P., “Formation and cycling of aerosols in the global troposphere,” Atmosphere environment 34, 4215-4240 (2000).
    Rosen, J.M., N.T. Kjome, “Ballon-borne measurements of the aerosol extinction-to-backscatter ratio,” J. of Geophys. Res. 102, 11165-11170 (1997).
    Sakai, T., T. ibata, S.A. Kwon, Y. Kim, K. Tamura, Y. Iwasaka, “Free tropospheric aerosol backscatter, depolarization ratio, and relative humidity measured with the Raman lidar at Nagoya in 1994-1997: contributions of aerosols from the Asian Continent and the Pacific Ocean,” Atmospheric Environment 34, 431-442 (2000).
    Sarah. J. Doherty, T. L. Anderson, and R. J. Charlson, “Measurements of the lidar ratio for atmospheric aerosols with 1800 backscatter nephelometer,” Appl. Opt. 38, 1823-1832 (1999) .
    Sassen, K., Zhao, H., Yu, B.-K., “Backscatter laser depolarization studies of simulated stratospheric aerosols: crystallized sulfuric acid droplets,” Applied Optics 28, 3024-3029 (1989).
    Takamura, T.Y. Sasano, and T. Hayasaka, “Tropospheric aerosols optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132-7140 (1994).
    Tegen, I., Fung, I., “Contribution to the atmospheric mineral aerosol load from land surface modification,” Journal of Geophysics Reasearch 100, 18707-18726 (1995).
    王證權,”亞洲氣膠特性實驗—台灣北海岸春季氣膠化學特性”,國立中央大學環境工程研究所碩士論文(2001)。
    柳中明,”沙塵暴的基本特性”。
    陳韡鼐,”中壢上空10-30公里間的卷雲、氣溶膠、溫度的測量與光散射性質的研究”,國立中央大學物理研究所博士論文(2002)。

    QR CODE
    :::