跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林楷函
Kai-Han Lin
論文名稱: 空時區塊編碼之相差空間調變的進階結果
Further Results of Space-Time Block Coded Differential Spatial Modulation
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 58
中文關鍵詞: 相差空間調變空時區塊編碼維特比解碼多樣性
外文關鍵詞: differential spatial modulation, space-time block coding, Viterbi decoding, diversity
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先前的空時區塊編碼之相差空間調變中,使用時間排列以增加傳送速率,在本篇論文中,我們得到兩種空時區塊編碼之相差空間調變的進階結果。第一種是使用4×4空時區塊碼的相差空間調變,我們搜尋和設計符合傳送多樣性為四的交錯樣式,試圖找到最多樣式,以有高傳送速率。在另一個架構中,除了原本存在於空時區塊編碼之相差空間調變的時間排列外,我們增加了空間上的排列。透過選擇時間與空間的排列模式,比起現有的空時區塊編碼之相差空間調變具有更高的頻寬效益。


    In the previous space-time block coded differential spatial modulation (STBC-DSM), temporal permutation was employed to increase the transmission rate. In this paper, we present advanced results for two types of STBC-DSM. The first type utilizes a 4×4 space-time block code in DSM, where we search and design interleaving patterns that achieve a transmission diversity of four, aiming to maximize the number of patterns for high transmission rates. In another framework, in addition to the temporal permutation inherent in the STBC-DSM, we introduce spatial permutation as well. By selecting patterns for both temporal permutation and spatial permutation, our approach achieves higher bandwidth efficiency compared to existing techniques in STBC-DSM.

    摘要 IV Abstract V 致謝 VI 目錄 VIII 圖目錄 X 表目錄 XI 第一章 緒論 1 1.1 背景與研究動機 1 第二章 相關背景回顧 4 2.1 相差空間調變 4 2.2空時區塊碼 7 2.3 使用符元交錯的空時區塊編碼之相差空間調變 8 2.3.1 傳送端 8 2.3.2 交錯樣式 10 2.3.3 接收端 14 2.4 傳送多樣性為四的空時區塊編碼之相差空間調變 16 2.4.1使用符元交錯的空時區塊編碼之相差空間調變 16 第三章 傳送多樣性為四的空時區塊編碼之相差空間調變 22 3.1 內部交錯樣式的設計 22 3.2外部交錯樣式的設計 24 3.3 模擬結果 27 第四章 空時交錯的區塊編碼之相差空間調變 29 4.1空間排列設計 29 4.2傳送端架構 31 4.3接收端架構 35 4.4 模擬結果 38 第五章 結論 43 附錄 44 參考文獻 46

    [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
    [2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
    [3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun.,vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
    [4] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
    [5] S. Sugiura, S. Chen, and L. Hanzo, “A universal space-time architecture for multiple-antenna aided systems,” IEEE Commun. Surveys & Tutorials,vol. 14, no. 2, pp. 401–420, May 2012.
    [6] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
    [7] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,no. 7, pp. 3262-3268, Jul. 2015.
    [8] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337-340, Aug. 2014.
    [9] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
    [10] L. Xiao, Y. Xiao, P. Yang, J. Jiu, S. Li, and W. Xiang, “Space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 10,pp. 8821-8834, Oct. 2017.
    [11] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
    [12] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform.Theory, vol. 46, pp. 2567-2578, no. 7, Nov. 2000.
    [13] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, “Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation," IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385-394, Jan. 2017.
    [14] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
    [15] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr.2019.
    [16] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
    [17] T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965-975, July 1991.
    [18] R. Y. Wei, Y. W. Tsai and S. L. Chen, “Improved schemes of differential spatial modulation,” IEEE Access, vol. 9, pp. 97120-97128, July. 2021.
    [19] 崔皓宇, “傳送多樣為四的廣義相差空間調變” 國立中央大學通訊工程研究所,碩士論文, 六月. 2021.
    [20] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized differential spatial modulation,’’ IEEE Transactions on Vehicular Techonlogy, Early Access, 2022.
    [21] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
    [22] 張峻睿, “高多樣性廣義相差空間調變” 國立中央大學通訊工程研究所,碩士論文, 十一月. 2023.
    [23] R. Y. Wei and L. T. Chen, “Further results on differential encoding by a table,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2580-2590, Sep. 2012

    QR CODE
    :::