| 研究生: |
林楷函 Kai-Han Lin |
|---|---|
| 論文名稱: |
空時區塊編碼之相差空間調變的進階結果 Further Results of Space-Time Block Coded Differential Spatial Modulation |
| 指導教授: |
魏瑞益
Ruey-Yi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 相差空間調變 、空時區塊編碼 、維特比解碼 、多樣性 |
| 外文關鍵詞: | differential spatial modulation, space-time block coding, Viterbi decoding, diversity |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在先前的空時區塊編碼之相差空間調變中,使用時間排列以增加傳送速率,在本篇論文中,我們得到兩種空時區塊編碼之相差空間調變的進階結果。第一種是使用4×4空時區塊碼的相差空間調變,我們搜尋和設計符合傳送多樣性為四的交錯樣式,試圖找到最多樣式,以有高傳送速率。在另一個架構中,除了原本存在於空時區塊編碼之相差空間調變的時間排列外,我們增加了空間上的排列。透過選擇時間與空間的排列模式,比起現有的空時區塊編碼之相差空間調變具有更高的頻寬效益。
In the previous space-time block coded differential spatial modulation (STBC-DSM), temporal permutation was employed to increase the transmission rate. In this paper, we present advanced results for two types of STBC-DSM. The first type utilizes a 4×4 space-time block code in DSM, where we search and design interleaving patterns that achieve a transmission diversity of four, aiming to maximize the number of patterns for high transmission rates. In another framework, in addition to the temporal permutation inherent in the STBC-DSM, we introduce spatial permutation as well. By selecting patterns for both temporal permutation and spatial permutation, our approach achieves higher bandwidth efficiency compared to existing techniques in STBC-DSM.
[1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
[3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO channels,” IEEE Trans. Wireless Commun.,vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
[4] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
[5] S. Sugiura, S. Chen, and L. Hanzo, “A universal space-time architecture for multiple-antenna aided systems,” IEEE Commun. Surveys & Tutorials,vol. 14, no. 2, pp. 401–420, May 2012.
[6] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
[7] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,no. 7, pp. 3262-3268, Jul. 2015.
[8] N. Ishikawa and S. Sugiura, “Unified differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337-340, Aug. 2014.
[9] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
[10] L. Xiao, Y. Xiao, P. Yang, J. Jiu, S. Li, and W. Xiang, “Space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 10,pp. 8821-8834, Oct. 2017.
[11] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[12] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform.Theory, vol. 46, pp. 2567-2578, no. 7, Nov. 2000.
[13] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, “Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation," IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385-394, Jan. 2017.
[14] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
[15] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,”IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr.2019.
[16] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
[17] T. Kasami, T. Takata, T. Fujiwara and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 965-975, July 1991.
[18] R. Y. Wei, Y. W. Tsai and S. L. Chen, “Improved schemes of differential spatial modulation,” IEEE Access, vol. 9, pp. 97120-97128, July. 2021.
[19] 崔皓宇, “傳送多樣為四的廣義相差空間調變” 國立中央大學通訊工程研究所,碩士論文, 六月. 2021.
[20] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized differential spatial modulation,’’ IEEE Transactions on Vehicular Techonlogy, Early Access, 2022.
[21] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
[22] 張峻睿, “高多樣性廣義相差空間調變” 國立中央大學通訊工程研究所,碩士論文, 十一月. 2023.
[23] R. Y. Wei and L. T. Chen, “Further results on differential encoding by a table,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2580-2590, Sep. 2012