| 研究生: |
林惟瑜 Wei-yu Lin |
|---|---|
| 論文名稱: |
質子交換膜燃料電池堆組裝誤差對流場特性之影響 Effects of Assembly Error on Flow Field Distribution in Proton Exchange Membrane Fuel Cell Stack |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 流場 、密封墊片 、組裝 、金屬發泡材 |
| 外文關鍵詞: | flow field, gasket, assembly, metal foam |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以金屬發泡材取代傳統流道的設計作為設計基礎,探討質子交換膜燃料電池堆在組裝過程中,由於組裝應力對電池堆內元件可能造成的效應對於流場特性的影響。幾何外型使用商用繪圖軟體SOLIDWORKS繪製三維、且由十二顆單電池組成的燃料電池堆流體部分,使用CFD前處理套件Workbench內的MESH功能建構格點系統,匯入商用計算流體力學軟體FLUENT進行流場特性的數值模擬分析。以既有金屬發泡材取代傳統流道的設計,針對密封墊片侵入歧管深度、密封墊片遮蔽次流道面積、金屬發泡材滲透率的改變、以及氣體擴散層滲透率的改變,探討對電池堆流場特性的影響。
針對歧管尺寸,發現歧管直徑為5 mm為此流道設計下,較佳的歧管尺寸。而由本研究可知,當密封墊片侵入次流道深度比為7.5 %時,會使不均勻性指標大於10 %,且遮蔽面積愈大時,會使電池堆總壓降提升;而密封墊片遮蔽歧管深度為0.5 mm時,不均勻性指標會超過10 %,此時除了電池堆總壓降提升外,整個電池堆壓力降的主要來源則由發泡材部分,變為歧管部分影響最明顯;當電池堆中,各單電池金屬發泡材滲透率最大誤差在20 %以內時,對流場均勻性的影響不大,僅會影響電堆流量分布以及壓力降分布型態;而當氣體擴散層的滲透率最大誤差達80 %時,對電池堆均勻性以及分布型態皆無明顯影響。
In this study, the effects of the clamping force on flow distribution caused in the process of assembling fuel cell stack applied on components, such as gasket, are discussed. Metal foam is inserted into the flow field of proton exchange membrane fuel cell stack to replace the traditional design. A three-dimensional geometry is built by using SOLIDWORKS and established the mesh system in ANSYS Workbench. Finally, the discrete equations are solved by the CFD software FLUENT version 13.0.
For the present flow field design, uniformity index could be maintained below 10 % if the manifold diameter is larger than 5 mm. When the gasket intrusion depth in channel is larger than 7.5 %, the uniformity index would exceed 10 %. The pressure drop in each cell would increase as the gasket intrusion depth in channel increases. On the other hand, the gasket intrusion depth in manifold will cause the uniformity index exceed 10 % over 0.5 mm and the pressure drop in manifold dominates the total pressure drop instead of metal foam. When the largest difference of permeability of metal foam between each cell is under 20 %, permeability of metal foam would not affect uniformity obviously but only the distribution. In gas diffusion layer, the permeability would not affect the uniformity and distribution greatly even if the largest difference of permeability reaches 80 %.
[1] P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000:Part I. Fundamental scientific aspects, “Journal of Power sources, Vol. 102, pp. 242-252, 2001.
[2] P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000:Part II. Engineering, technology development and application aspects, ”Journal of Power Sources, Vol. 102, pp. 253-269, 2001.
[3] S. Simpalee, S. Greenway and J. W. Van Zee, “The impact of channel path lengh on PEMFC flow-field design,” Journal of Power Sources, Vol. 160, pp. 398-406, 2006.
[4] K. Tuber, A Oedegraad, M. Hermann and C. Hebling, “Investigation of fractal flow –field in portable proton exchange membrane and direct methanol fuel cell,” Journal of Power Sources, Vol. 131, pp. 175-181, 2004.
[5] M. Rahimi, B. Aghel, A. A. Alsairah, “Experimental and CFD studies on using coil wire insert in a proton exchange membrane fuel cell,” Chemical Engineering and Processing, Vol. 49, pp. 689-696, 2010.
[6] G. Karimi, J. J. Baschuk, X. Li, “Performance analysis and optimization of PEM fuel cell stacks using flow network approach,” Journal of Power Sources, Vol. 147, pp. 162-177, 2005.
[7] Yongjin Sung, “Optimization of a fuel-cell manifold,” Journal of Power Sources, Vol. 157, pp. 395-400, 2006.
[8] Chung-Hsien Chen, Shiauh-Ping Jung, Shi-Chern Yen, “Flow distribution in the manifold of PEM fuel cell stack,” Journal of Power Sources, Vol. 173, pp. 249-263, 2007.
[9] Radu Mustata, Luis Valino, Felix Barrearas, Maria Isabel Gil, Antonio Lozano, “Study of the distribution of air flow in a proton exchange membrane fuel cell stack,” Journal of Power Sources, Vol.192, pp. 185-189, 2009.
[10] K. Scott, P. Argyropoulos, P. Yiannopoulos and W. M. Taama, “Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds,” Journal of Applied Electrochemical Society, Vol. 31, pp. 823-832, 2001.
[11] A. Kumar and R.G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol. 114, pp. 54-62, 2003.
[12] S.M. Senn and D. Poulikakos, “Polymer electrolyte fuel cells with porous materials as fluid distributors and comparisons with traditional channeled systems ,” Transactions of ASME , Vol. 126, pp. 410-418, 2004.
[13] S. Arisetty, A. K. Prasad and S. G. Advani, “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol. 165, pp. 49-57, 2007.
[14] 蔡秉蒼,曾重仁,「金屬發泡材質子交換膜燃料電池之性能分析」,第三屆全國氫能與燃料電池學術研討會,FC043,國立台南大學,2008。
[15] 陳孟怡,「金屬發泡材質子交換膜燃料電之研究」,碩士論文,國立中央大學機械工程學系,2009。
[16] J. Chen, “Experimental study on the two phase flow next term behavior in PEM fuel cell parallel channels with porous media inserts,” Journal of Power Sources, Vol. 195, pp. 1122-1129, 2010.
[17] J. Kim and N. Cunninghham, “Development of porous carbon foam polymer electrolyte membrane fuel cell,” Journal of Power Sources, Vol. 195, pp. 2291-2300, 2010.
[18] Jinzhu Tan, Y.J. Chao, Xiadong Li, J. W. Van Zee, “Degradation of silicone rubber under compression in a simulated PEM fuel cell environment,” Journal of Power Sources, Vol. 172, pp. 782-789, 2007.
[19] Jinzhu Tan, Y.J. Chao, Min Yang, Woo-Kum Lee, J. W. Van Zee, “Chemical and mechanical stability of a silicone gasket material exposed to PEM fuel cell environment,” International Journal of Hydrogen Energy, Vol. 36, pp. 1846-1852, 2011.
[20] Chih-Wei Lin, Chi-Hui Chien, Jinzhu Tan, J. W. Van Zee, “Chemical degradation of five elastomeric seal material in a simulated and an accelerated PEM fuel cell environment,” Journal of Power Sources, Vol. 196, pp. 1955-1966, 2011.
[21] S. Mazumder and J. V. Cole, “Rigorous 3-D Mathematical modeling of PEM fuel cells,” Journal of Electrochemical Society, Vol. 147, pp. 1510- 1517, 2003.
[22] F. Moukalled and M. Darwish, “A comparative assessment of the performance of mass conservation-based algorithms for incompressible multiphase flows,” Numerical Heat Transfer Part B, Vol 42, pp. 259-283, 2002.
[23] S. V. Patankar, Numerical heat transfer and fluid flows, Hemisphere, Washington, 1980.
[24] Mohamed A. Teamah, Wael M. El-Maghlany, Mohamed M. Khairat Dawood, “Numerical simulation of laminar forced convection in horizontal pipe partially or completely filled with porous material,” International Journal of Thermal Science, vol. 50, pp. 1512-1522, 2011