跳到主要內容

簡易檢索 / 詳目顯示

研究生:
emil adly
論文名稱: 使用南投與花蓮 骨料時,各種化學添加劑對黏結劑老化 與 WMA 性能的影響
Impact of Various Chemical Additives on Binder Aging and WMA Performance Using Nantou and Hualien Aggregates
指導教授: 陳世晃
Chen, Shih Huang
潘普翠
Putri Adhitana Paramitha
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 276
中文關鍵詞: 老化瀝青、骨材來源溫拌瀝青化學添加劑、混合料性能。
外文關鍵詞: Aging asphalt, Aggregate sources, Warm mix asphalt chemical additive, mixture performance
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溫拌瀝青混凝土 (Warm Mix Asphalt, WMA)可降低生產溫度、減少溫室氣體(Greenhouse
    Gas, GHG) 排放與節省能源,已成為鋪面工程中日益受到重視的技術。為提升WMA 整
    體性能,本研究探討多種溫拌瀝青化學添加劑 (Warm Mix Asphalt Chemical Additives,
    WMACA) 與臺灣南投與花蓮具代表性骨材的組合,來探討對WMA混合料性能與耐久
    性的影響,並其進行環境效益與成本分析。本研究可分為兩階段,首先評估添加不同
    劑量 WMACA 對瀝青膠泥在未老化與老化狀態下的基本性質、黏彈性與化學試驗
    SARA 之影響;接著針對WMA混合料進行間接拉伸強度(ITS)、拉伸強度比 (TSR)、磨
    耗試驗、CT-index與漢堡輪跡試驗等性能測試。結果顯示,部分 WMACA 添加劑能顯
    著提升瀝青膠泥之剛性,並降低老化過程中的氧化效應之影響,惟添加劑劑量與性能
    提升不呈線性正相關。在配合設計方面,本研究依據性能優勢,選定
    WMACA
    A(0.25%)、B(0.5%)、C(0.05%)、D(0.25%) 與 E(0.85%)作為第二階段混合料測試對象。
    化學添加劑種類與骨材來源對WMA混合料的表現均具有顯著影響。其中,南投與花蓮
    骨材皆符合標準規範,但因南投骨材因含有活性礦物,搭配 WMACA C 表現最佳;花
    蓮骨材則可能需透過調整級配或使用添加劑與填縫料以提升性能。於成本與環境效益
    評估方面,於南投或花蓮使用 WMA皆均較HMA 節省 22% 能源,且生產成本較 HMA
    為低;GHG 排放方面 WMA 與 HMA 間具顯著差異,但受骨材來源之影響有限。整體
    而言,WMACA展現良好應用潛力且適合應用於臺灣,南投與花蓮之骨材皆能穩定提
    升 WMA 性能。透過適當配合設計與材料選用,WMA技術可進一步推動本土化、高性
    能且永續之鋪面技術發展。


    Warm Mix Asphalt (WMA) has become an increasingly appealing solution in pavement
    engineering due to its ability to lower production temperatures, reduce emissions, and conserve
    energy. To optimize WMA performance, it is essential to understand how chemical additives
    affect aging and how different aggregate sources impact mechanical behavior and durability.
    This study examines the impact of various Warm Mix Asphalt Chemical Additives (WMACA)
    on the performance and durability of WMA mixtures using aggregates from two geological
    regions in Taiwan: Nantou and Hualien. The study consisted of two phases: evaluating binders
    at varying dosages and testing the performance of the resulting mixtures. Additionally, an
    environmental and cost assessment was conducted to estimate potential reductions in
    greenhouse gas (GHG) emissions. The asphalt binder evaluation included basic properties,
    viscoelastic behavior, and chemical tests performed in unaged and aged conditions. The mixture
    phase focused on key performance indicators using tests such as Indirect Tensile Strength (ITS),
    Tensile Strength Ratio (TSR), Cantabro Loss, CT index, and Hamburg Wheel Tracking Test
    (HWTT). The results show that some WMACA improve binder stiffness. The viscoelastic tests
    indicate that the dosage level does not have a positive linear correlation. Chemical analysis
    using SARA reveals that aging alters the asphalt's composition, and WMACA additives help
    mitigate the oxidative effects. The selected WMACA dosages for the second phase of asphalt
    mixture testing were A (0.25%), B (0.5%), C (0.05%), D (0.25%), and E (0.85%), based on
    performance benefits. Both the type of chemical additive and the source of aggregates
    significantly affected the behavior of WMA mixtures. Although both Nantou and Hualien
    aggregates met standard specifications, mixtures using Nantou aggregates with active minerals
    and WMACA C showed better performance. Hualien aggregates, however, indicated a need for
    adjustments in gradation, additives, or fillers. WMA consistently used about 22% less energy
    than HMA in both locations and demonstrated lower production costs. The GHG emissions
    differences between HMA and WMA were minor and mainly related to the source material.
    The findings confirm that WMACA additives are suitable for use in Taiwan, providing
    consistent improvements in WMA performance with both Nantou and Hualien aggregates.
    Although minor variations exist, further enhancements can be achieved through adjustments to
    gradation or the addition of extra additives. This research provides a solid foundation for
    ongoing development and supports wider adoption of sustainable, performance-oriented WMA
    technologies tailored to local materials.

    摘要 i Abstract… ii Acknowledgement iii Table of Contents iv List of Figures ix List of Table xiv List of Abbreviations xvii List of Symbols xix Chapter 1: Introduction 1 1-1 Background 1 1-2 Research Objectives 3 1-3 Research Scope 3 1-4 Study Flowchart 4 Chapter II: Literature Review 7 2-1 Warm Mix Asphalt (WMA) Technology 7 2-1-1 Advantage and Disadvantage of Warm Mix Asphalt 8 2-1-2 Chemical Additive 11 2-1-3 Wax or Organic Additive 13 2-1-4 Foaming Technology 13 2-2 Rheological Properties of WMACA 14 2-2-1 Physical Properties 14 2-2-2 Chemical Properties 17 2-2-3 Viscoelastic Behavior of Asphalt Binder 20 2-3 Asphalt Aging 23 2-4 Aggregate Properties 24 2-4-1 Physical Properties of Aggregates 24 2-4-2 Mineralogy Properties of Aggregates 27 2-5 Reaction Aggregate with Asphalt 28 2-6 Performance Evaluation of WMACA 28 2-6-1 Coating and Boiling Tests 28 2-6-2 Compactability Assasement 29 2-6-3 Indirect Tensile Strength (ITS) and Tensile Strength Ratio (TSR) 32 2-6-4 Cantabro Test 34 2-6-5 Fatigue Cracking of Asphalt Mixtures 35 2-6-6 The Hamburg Wheel Tracking Test (HWTT) 36 2-6-7 Economic and Environmental Considerations 36 2-7 Summarize of the literature review 38 Chapter III: Methodology 41 3-1 Material 41 3-1-1 Asphalt Binder 41 3-1-2 Additives 41 3-1-3 Aggregate 43 3-2 Asphalt binder preparation 45 3-3 Short and Long - Term Aging Binder 46 3-4 Phase 1: For Rheological Analysis of Asphalt Binder 48 3-4-1 Physical Properties Assessment 48 3-4-2 Chemical Properties Evaluation 50 3-4-3 Viscoelastic Behavior Testing 52 3-5 Phase 2: Asphalt Concrete Mix Testing 62 3-5-1 Aggregate Properties Analysis 62 3-5-2 Mix Design 63 3-5-3 Coating Test 64 3-5-4 Boiling Test 64 3-5-5 Compactability Assessment 65 3-5-6 Indirect Tensile Strength (ITS) and Tensile Strength Ratio (TSR) 68 3-5-7 Cantabro Test 69 3-5-8 Fatigue Cracking Asphalt Mixtures 70 3-5-9 Hamburg Wheel Tracking Test (HWTT) 72 3-6 Energy, Economic, and Environmental Analysis 73 Chapter IV: Results and Discussion - of Asphalt Binder 79 4-1 Physical Properties of Asphalt Binder 79 4-1-1 Penetration Test 79 4-1-2 Softening Point Test 80 4-1-3 Penetration Index (PI) 82 4-1-4 Specific Gravity 84 4-2 Chemical Properties 85 4-2-1 SARA Fraction 85 4-2-2 Fourier Transform Infrared Spectroscopy (FTIR) 91 4-3 Viscoelastic Behavior of Asphalt Binder 96 4-3-1 Viscosity Analysis 96 4-3-2 G*/sinδ (Rutting Resistance) 96 4-3-3 Multiple Stress Creep Recovery (MSCR) 104 4-3-4 Linear Amplitude Sweep (LAS) 111 4-4 Summary and Key Findings of Asphalt Binder 113 Chapter V: Result and Discussion - Asphalt Concrete 116 5-1 Mixing and Compaction Temperature Analysis 116 5-2 Aggregate Properties and Composition 118 5-2-1 Aggregate Properties 118 5-2-2 Mineralogy Aggregate Composition 119 5-2-3 Discussion 124 5-3 Coating test Results 124 5-3-1 Nantou Samples 124 5-3-2 Hualien Samples 127 5-3-3 Discussion 130 5-4 Boiling Test Results 132 5-4-1 Nantou Samples 132 5-4-2 Hualien Samples 134 5-4-3 Discussion 136 5-5 Compactability Evaluation 138 5-5-1 Nantou Samples 138 5-5-2 Hualien Samples 141 5-5-3 Discussion 145 5-6 Indirect Tensile Strength (ITS) and Tensile Strength Ratio (TSR) 148 5-6-1 Nantou Samples 148 5-6-2 Hualien Samples 151 5-6-3 Discussion 154 5-7 Cantabro Test Results 156 5-7-2 Nantou Samples 156 5-7-1 Hualien Samples 157 5-7-3 Discussion 158 5-8 Fatigue Cracking Asphalt Mixtures 160 5-8-1 Nantou Samples 160 5-8-2 Hualien Samples 163 5-8-3 Discussion 165 5-9 Hamburg Wheel Tracking Test (HWTT) 168 5-9-1 Nantou Samples 168 5-9-2 Hualien Samples 170 5-9-3 Discussion 171 5-10 Concluding Remark Asphalt Mixture 172 Chapter VI: Economic and Environmental Analysis 175 6-1 Analysis of Nantou Samples 175 6-1-1 Total Energy Consumption 175 6-1-2 Total Cost Consumption 175 6-1-3 Environment Impact Assessment 176 6-2 Analysis for Hualien Samples 177 6-1-1 Total Energy Consumption 177 6-1-2 Total Cost Consumption 178 6-1-3 Environment Impact Assessment 179 6-3 Summary and Key Finding of Economic and Environmental Analysis 180 Chapter VII: General Discussion 183 7-1 Penetration Index 183 7-2 Rutting Resistance Index 183 7-2-1 Complex modulus aging index (CMI) 183 7-2-2 Phase angle aging index (PHI) 185 7-2-3 G*/sin δ Aging Index 187 7-3 Failure Temperature Index 189 7-4 SARA Aging Index 189 7-5 Fourier Transform Infrared Spectroscopy (FTIR) Aging Index 193 7-6 Correlation analysis 193 7-6-1 Correlation Analysis of Aging Sensitivity 193 7-6-2 Correlation between Jnr with Rutting 195 7-6-3 Correlation between G*/sinδ with deep rut 197 7-6-4 Correlation between Nf and CT index 197 7-6-5 Correlation effect of oxidative asphalt to WMACA mixture 200 7-7 Concluding Remark 203 Chapter VIII: Conclusions and Recommendation 207 8-1 Conclusion 207 8-2 Recommendations and future work 209 References 211 Appendix 227

    [1] R. Pereira, A. Almeida-Costa, C. Duarte, and A. Benta, “Warm mix asphalt: Chemical additives’ effects on bitumen properties and limestone aggregates mixture compactibility,” International Journal of Pavement Research and Technology, vol. 11, no. 3, pp. 285–299, May 2018, doi: 10.1016/j.ijprt.2017.10.005.
    [2] A. Stimilli, A. Virgili, and F. Canestrari, “Warm recycling of flexible pavements: Effectiveness of Warm Mix Asphalt additives on modified bitumen and mixture performance,” Journal of Cleaner Production, vol. 156, pp. 911–922, Jul. 2017, doi: 10.1016/j.jclepro.2017.03.235.
    [3] M. Pasetto, A. Baliello, G. Giacomello, and E. Pasquini, “Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags,” Journal of Cleaner Production, vol. 166, pp. 835–843, Nov. 2017, doi: 10.1016/j.jclepro.2017.07.212.
    [4] X. Yang et al., “Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions,” Journal of Hazardous Materials, vol. 365, pp. 942–951, Mar. 2019, doi: 10.1016/j.jhazmat.2018.11.080.
    [5] T. Gandhi, “Effects of Warm Asphalt Additives on Asphalt Binder and Mixture Properties,” Clemson University, South Carolina, 2008.
    [6] M. Fakhri and A. Rahimzadeh Mottahed, “Improving moisture and fracture resistance of warm mix asphalt containing RAP and nanoclay additive,” Construction and Building Materials, vol. 272, pp. 1–16, Feb. 2021, doi: 10.1016/j.conbuildmat.2020.121900.
    [7] A. Huang, G. Liu, V. Mouillet, S. C. Somé, T. Cao, and H. Huang, “Rheological and Chemical Evolution of HMA and WMA Binders Based on Ageing Kinetics,” Materials, vol. 15, no. 2, pp. 1–16, Jan. 2022, doi: 10.3390/ma15020679.
    [8] J. Oner, B. Sengoz, S. F. Rija, and A. Topal, “Investigation of the rheological properties of elastomeric polymer-modified bitumen using warm-mix asphalt additives,” Road Materials and Pavement Design, vol.18, no.5, pp.1049–1066, Sep.2017, doi: 10.1080/14680629.2016.1206484.
    [9] E. Kassem, L. Garcia Cucalon, E. Masad, and D. Little, “Effect of warm mix additives on the interfacial bonding characteristics of asphalt binders,” International Journal of Pavement Engineering, vol.19, no.12, pp.1111–1124, Dec. 2018, doi: 10.1080/10298436.2016. 1240563.
    [10] H. A. Kassem and G. R. Chehab, “Characterisation of the mechanical performance of asphalt concrete mixtures with selected WMA additives,” International Journal of Pavement Engineering, vol. 22, no. 5, pp. 625–642, Apr. 2021, doi: 10.1080/10298436.2019.1632452.
    [11] P. Caputo et al., “The Role of Additives in Warm Mix Asphalt Technology: An Insight into Their Mechanisms of Improving an Emerging Technology,” Nanomaterials, vol. 10, no. 6, p. 1202, Jun. 2020, doi: 10.3390/nano10061202.
    [12] M. K. Khan and A. Hussain, “Rutting and Moisture Susceptibility Assessment of Asphalt Wearing Course Gradations,”CEJ, vol.28, no. 3, Oct. 2019, doi: 10.14311/CEJ. 2019.03.0037
    [13] W. Li, W. Cao, X. Ren, S. Lou, S. Liu, and J. Zhang, “Impacts of Aggregate Gradation on the Volumetric Parameters and Rutting Performance of Asphalt Concrete Mixtures,” Materials, vol. 15, no. 14, p. 4866, Jul. 2022, doi: 10.3390/ma15144866.
    [14] F. Xiao, D. A. Herndon, S. Amirkhanian, and L. He, “Aggregate gradations on moisture and rutting resistances of open graded friction course mixtures,” Construction and Building Materials, vol. 85, pp. 127–135, Jun. 2015, doi: 10.1016/j.conbuildmat.2015.03.095.
    [15] F. Guo, J. Pei, J. Zhang, B. Xue, G. Sun, and R. Li, “Study on the adhesion property between asphalt binder and aggregate: A state-of-the-art review,” Construction and Building Materials, vol. 256, p. 119474, Sep. 2020, doi: 10.1016/j.conbuildmat.2020.119474.
    [16] S. A. Romanoschi and J. B. Metcalf, “Characterization of Asphalt Concrete Layer Interfaces,” Transportation Research Record, vol. 1778, no. 1, pp. 132–139, Jan. 2001, doi: 10.3141/1778-16.
    [17] J. Wang, F. Xiao, Z. Chen, X. Li, and S. Amirkhanian, “Application of tack coat in pavement engineering,” Construction and Building Materials, vol. 152, pp. 856–871, Oct. 2017, doi: 10.1016/j.conbuildmat.2017.07.056.
    [18] C. Estakhri, J. Button, and A. E. Alvarez, “Field and Laboratory Investigation of Warm Mix Asphalt in Texas,” Texas Transportation Institute, Texas, Technical Report FHWA/TX-10/0-5597-2, Jul. 2010.
    [19] J. D’Angelo et al., “Warm-Mix Asphalt: European Practice,” Department of Transportation, Washington, DC, Alexandria, FHWA-PL-08-007, 2008.
    [20] A. Sani, M. R. Mohd Hasan, K. Anuar Shariff, A. Jamshidi, A. Huddin Ibrahim, and S. Poovaneshvaran, “Engineering and microscopic characteristics of natural rubber latex modified binders incorporating silane additive,” International Journal of Pavement Engineering, pp. 1–10, 2019, doi: DOI:1080/10298436.2019.1573319.
    [21] R. R. Prajapati, H. P. Chotalia, S. I. Vahora, A. D. Patel, and C. B. Mishra, “Gauging the properties of CRMB 60 in Mix Design with Zycotherm as warm mix additive,” vol. 5, no. 3, pp. 1612–1617, 2015.
    [22] M. C. Rubio, G. Martínez, L. Baena, and F. Moreno, “Warm mix asphalt: an overview,” Journal of Cleaner Production, vol. 24, pp. 76–84, Mar. 2012, doi: 10.1016/j.jclepro.2011.11.053.
    [23] EAPA (Europian Asphalt Pavement Assosiation), “The use of Warm Mix Asphalt.” Oct. 2014. [Online]. Available: www.eapa.org
    [24] B. Yang, H. Xu, P. Zhou, and Y. Tan, “Investigation of aggregate moisture content variation and its impact on pavement performance of WMA,” Construction and Building Materials, vol. 255, p. 119350, Sep. 2020, doi: 10.1016/j.conbuildmat.2020.119350.
    [25] M. Zaumanis, “Warm Mix Asphalt,” in Climate Change, Energy, Sustainability and Pavements, K. Gopalakrishnan, W. J. Steyn, and J. Harvey, Eds., in Green Energy and Technology. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 309–334. doi: 10.1007/978-3-662-44719-2_10.
    [26] A. Milad et al., “A Comparative Review of Hot and Warm Mix Asphalt Technologies from Environmental and Economic Perspectives: Towards a Sustainable Asphalt Pavement,” IJERPH, vol. 19, no. 22, p. 14863, Nov. 2022, doi: 10.3390/ijerph192214863.
    [27] R. West, C. Rodezno, F. Leiva, and F. Yin, “Development of a Framework for Balanced Mix Design,” National Center for Asphalt Technology at Auburn University Auburn, Project NCHRP 20-07/Task 406, 2018.
    [28] S. Wu, O. Tahri, S. Shen, W. Zhang, and B. Muhunthan, “Environmental impact evaluation and long-term rutting resistance performance of warm mix asphalt technologies,” Journal of Cleaner Production, vol. 278, p. 123938, Jan. 2021, doi: 10.1016/j.jclepro.2020.123938.
    [29] M. Mazumder, V. Sriraman, H. H. Kim, and S.-J. Lee, “Quantifying the environmental burdens of the hot mix asphalt (HMA) pavements and the production of warm mix asphalt (WMA),” International Journal of Pavement Research and Technology, vol. 9, no. 3, pp. 190–201, May 2016, doi: 10.1016/j.ijprt.2016.06.001.
    [30] B. D. Prowell, G. C. Hurley, P.E., and B. Frank, Warm-Mix Asphalt: Best Practices, 3rd Edition. National Asphlt Pavement Assosiation, 2012.
    [31] G. C. Hurley and B. D. Prowell, “Evaluation of Aspha-Min® Zeolite for Use in Warm Mix Asphalt,” National Center for Asphalt Technology Auburn University, Auburn, Alabama, Alabama, NCAT Report 05-04, 2005.
    [32] H. A. Omar, N. I. Md. Yusoff, M. Mubaraki, and H. Ceylan, “Effects of moisture damage on asphalt mixtures,” Journal of Traffic and Transportation Engineering (English Edition), vol. 7, no. 5, pp. 600–628, Oct. 2020, doi: 10.1016/j.jtte.2020.07.001.
    [33] N. M. Asmael and M. Q. Waheed, “Performance of Chemical WMA Mixtures – A review,” IJASRE, vol. 06, no. 01, pp. 120–126, 2020, doi: 10.31695/IJASRE.2020.33684.
    [34] A. Behnood, “A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties,” Journal of Cleaner Production, vol. 259, p. 120817, Jun. 2020, doi: 10.1016/j.jclepro.2020.120817.
    [35] T. Wurst, P.E, “‘Four Pillars of WMA’ Benefits of WMA and Lower Mixture Production Temperatures,” presented at the 65th APAM annual Conference, Feb. 22, 2022.
    [36] H. M. R. D. Silva, J. R.M. Oliveira, C. I.G. Ferreira, and P. A.A. Pereira, “Assessment of the Performance of Warm Mix Asphalts in Road Pavements,” International Journal of Pavement Research and Technolog, vol. 3, no. 3, pp. 119–127, 2010.
    [37] A. J. Hanz, A. Faheem, E. Mahmoud, and H. U. Bahia, “Measuring Effects of Warm-Mix Additives: Use of Newly Developed Asphalt Binder Lubricity Test for the Dynamic Shear Rheometer,” Transportation Research Record, vol. 2180, no. 1, pp. 85–92, Jan. 2010, doi: 10.3141/2180-10.
    [38] M. R. Mohd Hasan and Z. You, “Comparative study of ethanol foamed asphalt binders and mixtures prepared via manual injection and laboratory foaming device,” Journal of Traffic and Transportation Engineering (English Edition), vol. 6, no. 4, pp. 383–395, Aug. 2019, doi: 10.1016/j.jtte.2018.06.005.
    [39] A. Behnood, “A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties,” Journal of Cleaner Production, vol. 259, p. 120817, Jun. 2020, doi: 10.1016/j.jclepro.2020.120817.
    [40] M. R. Mohd Hasan, Z. You, H. Yin, L. You, and R. Zhang, “Characterizations of foamed asphalt binders prepared using combinations of physical and chemical foaming agents,” Construction and Building Materials, vol. 204, pp. 94–104, Apr. 2019, doi: 10.1016/j.conbuildmat.2019.01.156.
    [41] D. M. Singh, D. K. Jain, and S. S. Kahlon, “A Literature Review on the Role of Zycotherm as an Additive used in Bitumen,” vol. 4, no. 6, pp. 1354–1360, 2020.
    [42] J. Luo et al., “Physical, Rheological, And Microsurface Characteristics of High-Viscosity Binder Modified with WMA Agents,” Advances in Materials Science and Engineering, vol. 2022, pp. 1–12, Mar. 2022, doi: 10.1155/2022/5098250.
    [43] M. Abdullah Zawawi, N. Abdul Hassan, M. Z. H. Mahmud, R. Putra Jaya, and A. Mohamed, “Effect of Evotherm 3G on the performance of asphalt mixture,” Physics and Chemistry of the Earth, Parts A/B/C, vol.130, p.103392, Jun.2023, doi: 10.1016/j.pce.2023.103392.
    [44] R. Li, N. Shao, J. Yue, and B. Liang, “Research on the Influence of Different Warm-Mix Modifiers on Pavement Performance of Bitumen and Its Mixture,” Applied Sciences, vol. 13, no. 2, p. 955, Jan. 2023, doi: 10.3390/app13020955.
    [45] A. Behnood, M. M. Karimi, and G. Cheraghian, “Coupled effects of warm mix asphalt (WMA) additives and rheological modifiers on the properties of asphalt binders,” Cleaner Engineering and Technology, vol. 1, p. 100028, Dec. 2020, doi: 10.1016/j.clet.2020.100028.
    [46] H. Xu et al., “Investigation into Rheological Behavior of Warm-Mix Recycled Asphalt Binders with High Percentages of RAP Binder,” Materials, vol. 16, no. 4, p. 1599, Feb. 2023, doi: 10.3390/ma16041599.
    [47] M. Y. Aman, Z. Shahadan, M. Md. Ruhani, and R. Buhari, “Effects of Aging on the Physical and Rheological Properties of Asphalt Binder Incorporating Rediset®,” Jurnal Teknologi, vol. 70, no. 7, Oct. 2014, doi: 10.11113/jt.v70.3587.
    [48] M. A. Alqahtani and R. W. Bazuhair, “Effects of Rediset Additive on the Performance of WMA at Low, Intermediate, and High Temperatures,” Sustainability, vol. 15, no. 6, p. 5471, Mar. 2023, doi: 10.3390/su15065471.
    [49] H. Singh, T. Chopra, N. Garg, and M. Singh, “Effect of ZycoTherm Additive on Performance of Neat Bitumen and Bituminous Concrete Mixes,” International Journal of Civil Engineering and Technology (IJCIET), vol. 8, no. 8, pp. 232–238, 2017.
    [50] M. R. M. Hasan, M. O. Hamzah, and T. S. Yee, “Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm,” presented at the Proceedings of the International Conference of Global Network for Innovative Technology And Awam International Conference in Civil Engineering, Penang, Malaysia, 2017, p. 090001. doi: 10.1063/1.5005731.
    [51] A. Gedik, “A Literature Review of Bitumen Hardening from Past to Present: Aging Mechanism, Indicators, Test Methods, and Retarders,” in Airfield and Highway Pavements 2021, Virtual Conference: American Society of Civil Engineers, Jun. 2021, pp. 221–233. doi: 10.1061/9780784483510.021.
    [52] Irfan, B. S. Subagio, E. S. Hariyadi, and I. Maha, “The Rutting Resistance and Resilient Moduli of Pre-Vulcanized Liquid Natural Rubber Modified Asphaltic Concrete in Warm-Mix Temperature Condition,” Journal of Civil Engineering and Management, vol. 28, no. 3, pp. 196–207, Feb. 2022, doi: 10.3846/jcem.2022.16452.
    [53] O. A. O. and N. C.C, “Study of the Performance of Graded Palm Kernel Shells (PKS) As Partial Replacement for Coarse Aggregates in Hot Mix Asphalt (HMA) Binder Course with Zycotherm Chemical Additive,” IOSR, vol. 13, no. 05, pp. 99–109, May 2016, doi: 10.9790/1684-13050399109.
    [54] G. S. Chauhan and S. Tripathy, “Influence of Zycotherm on Properties of Bituminous Concrete Mix,” vol. 6, no. 6, 2019.
    [55] A. A. Onoja and H. M. Alhassan, “The Effect of Evotherm on Hot Mix Asphalt,” ENG, vol. 11, no. 09, pp. 557–575, 2019, doi: 10.4236/eng.2019.119039.
    [56] K. Maciejewski, P. Ramiączek, and E. Remisova, “Effects of Short-Term Ageing Temperature on Conventional and High-Temperature Properties of Paving-Grade Bitumen with Anti-Stripping and WMA Additives,” Materials, vol. 14, no. 21, p. 6229, Oct. 2021, doi: 10.3390/ma14216229.
    [57] B. Hu, X. Ai, and J. Feng, “Comparative study of typical asphalt binders in Xinjiang region modified with warm mix additives,” Front. Mater., vol. 11, p. 1363474, Feb. 2024, doi: 10.3389/fmats.2024.1363474.
    [58] E. Prosperi and E. Bocci, “A Review on Bitumen Aging and Rejuvenation Chemistry: Processes, Materials and Analyses,” Sustainability, vol. 13, no. 12, p. 6523, Jun. 2021, doi: 10.3390/su13126523.
    [59] J. W. H. Oliver, “Changes in the Chemical Composition of Australian Bitumens,” Road Materials and Pavement Design, vol. 10, no. 3, pp. 569–586, Jan. 2009, doi: 10.1080/14680629.2009.9690214.
    [60] I. Gawel and F. Czechowski, “Study of Saturated Components in Asphalt,” Petroleum Science and Technology, vol. 15, no. 7–8, pp. 729–742, Aug. 1997, doi: 10.1080/10916469708949685.
    [61] R. G. Allen, D. N. Little, A. Bhasin, and C. J. Glover, “The effects of chemical composition on asphalt microstructure and their association to pavement performance,” International Journal of Pavement Engineering, vol. 15, no. 1, pp. 9–22, Jan. 2014, doi: 10.1080/10298436.2013.836192.
    [62] A. Gupta, D. Sasidharan, B. Gottumukkala, and S. S. Kar, “Evaluation of healing performance of blended reclaimed asphalt binders with rejuvenators based on rheological and chemical properties,” Sādhanā, vol. 48, no. 3, p. 139, Jul. 2023, doi: 10.1007/s12046-023-02213-0.
    [63] S. I. Albrka, A. Ismail, N. Izzi, D. I. Alhamali, and A. Musbah, “Performance Properties of ASA Polymer Modified Asphalt Binders and Mixtures,” vol. 11, 2016.
    [64] M. Shishehbor, M. R. Pouranian, and R. Imaninasab, “Evaluating the adhesion properties of crude oil fractions on mineral aggregates at different temperatures through reactive molecular dynamics,” Petroleum Science and Technology, vol. 36, no. 24, pp. 2084–2090, Dec. 2018, doi: 10.1080/10916466.2018.1531032.
    [65] Y. Xu, L. Shan, and S. Tian, “Fractional Derivative Viscoelastic Response Model for Asphalt Binders,” J. Mater. Civ. Eng., vol. 31, no. 6, p. 04019089, Jun. 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002716.
    [66] A. Ghasemirad, N. Bala, and L. Hashemian, “High-Temperature Performance Evaluation of Asphaltenes-Modified Asphalt Binders,” Molecules, vol. 25, no. 15, p. 3326, Jul. 2020, doi: 10.3390/molecules25153326.
    [67] H. M. S. Lababidi, H. M. Sabti, and F. S. AlHumaidan, “Changes in asphaltenes during thermal cracking of residual oils,” Fuel, vol. 117, pp. 59–67, Jan. 2014, doi: 10.1016/j.fuel.2013.09.048.
    [68] M. Z. Alavi, E. Y. Hajj, and P. E. Sebaaly, “Significance of Oxidative Aging on the Thermal Cracking Predictions in Asphalt Concrete Pavements,” in 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements, vol. 13, A. Chabot, W. G. Buttlar, E. V. Dave, C. Petit, and G. Tebaldi, Eds., in RILEM Bookseries, vol. 13. , Dordrecht: Springer Netherlands, 2016, pp. 127–132. doi: 10.1007/978-94-024-0867-6_18.
    [69] H. A. Omar, H. Y. Katman, M. Bilema, M. K. A. Ahmed, A. Milad, and N. I. Md Yusoff, “The Effect of Ageing on Chemical and Strength Characteristics of Nanoclay-Modified Bitumen and Asphalt Mixture,” Applied Sciences, vol. 11, no. 15, p. 6709, Jul. 2021, doi: 10.3390/app11156709.
    [70] H. Li, P. Tong, X. Zhang, X. Lin, and B. Li, “Influence of Ultraviolet and Oxygen Coupling Aging on Rheological Properties and Functional Group Index of Warm Mix Asphalt Binder,” Materials, vol. 13, no. 19, p. 4216, Sep. 2020, doi: 10.3390/ma13194216.
    [71] S. A. P. Rosyidi et al., “Physical, Chemical and Thermal Properties of Palm Oil Boiler Ash/Rediset-Modified Asphalt Binder,” Sustainability, vol. 14, no. 5, p. 3016, Mar. 2022, doi: 10.3390/su14053016.
    [72] H. Khani Sanij, P. Afkhamy Meybodi, M. Amiri Hormozaky, S. H. Hosseini, and M. Olazar, “Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycotherm TM as an anti- stripping additive,” Construction and Building Materials, vol.197, pp.185–194, Feb.2019,
    doi: 10.1016/j.conbuildmat.2018.11.190.
    [73] L. Mo, X. Li, X. Fang, M. Huurman, and S. Wu, “Laboratory investigation of compaction characteristics and performance of warm mix asphalt containing chemical additives,” Construction and Building Materials, vol. 37, pp. 239–247, Dec. 2012, doi: 10.1016/j.conbuildmat.2012.07.074.
    [74] A. L. Belc, E. Coleri, F. Belc, and C. Costescu, “Influence of Different Warm Mix Additives on Characteristics of Warm Mix Asphalt,” Materials, vol. 14, no. 13, p. 3534, Jun. 2021, doi: 10.3390/ma14133534.
    [75] H. Yu, Z. Leng, Z. Dong, Z. Tan, F. Guo, and J. Yan, “Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives,” Construction and Building Materials, vol. 175, pp. 392–401, Jun. 2018, doi: 10.1016/j.conbuildmat.2018.04.218.
    [76] J. Yun, S. Vigneswaran, H. Kim, M.-S. Lee, and S.-J. Lee, “Laboratory Evaluation of Storage Stability for Asphalt Binder Modified with Crumb Rubber and Styrene–Isoprene–Styrene Depending on Evaluation Factors and Blending Condition,” Materials, vol. 17, no. 9, p. 2091, Apr. 2024, doi: 10.3390/ma17092091.
    [77] E. Yang et al., “Performance comparison of warm mix asphalt for plateau area,” Road Materials and Pavement Design, vol. 23, no. 1, pp. 211–221, Jan. 2022, doi: 10.1080/14680629.2020.1820889.
    [78] D. X. Lu and M. Saleh, “Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives,” Construction and Building Materials, vol. 114, pp. 580–587, Jul. 2016, doi: 10.1016/j.conbuildmat.2016.03.200.
    [79] E. Mirzaaghaeian, “Rheological properties of bituminous mastics containing chemical warm additive at medium temperatures and its relationship to warm mix asphalt fatigue behavior,” Construction and Building Materials, p. 11, 2019.
    [80] A. Behl and S. Chandra, “Aging Characteristics of Warm-Mix Asphalt Binders,” J. Mater. Civ.Eng., vol.29, no. 10, pp. 1–7, Oct. 2017, doi: 10.1061/(ASCE) MT.1943-5533.0002013.
    [81] I. A. Syed, U. A. Mannan, and R. A. Tarefder, “Comparison of rut performance of asphalt concrete and binder containing warm mix additives,” Int. J. Pavement Res. Technol., vol. 12, no. 2, pp. 162–169, Mar. 2019, doi: 10.1007/s42947-019-0021-4.
    [82] E. Turbay, G. Martinez-Arguelles, T. Navarro-Donado, E. Sánchez-Cotte, R. Polo-Mendoza, and E. Covilla-Valera, “Rheological Behaviour of WMA-Modified Asphalt Binders with Crumb Rubber,” Polymers, vol. 14, no. 19, p. 4148, Oct. 2022, doi: 10.3390/polym14194148.
    [83] A. Ameli, A. F. Naeini, R. Babagoli, and A. Akbari, “Effects of anti-striping agents on performance of binder and stone matrix asphalt (SMA) mixtures containing polyphosphoric acid/styrene-butadiene rubber composite polymer blends and warm mixture additives,” Journal of Thermoplastic Composite Materials, vol. 36, no. 1, pp. 5–56, Jan. 2023, doi: 10.1177/0892705720982342.
    [84] N. Norouzi, A. Ameli, and R. Babagoli, “Investigation of fatigue behaviour of warm modified binders and warm-stone matrix asphalt (WSMA) mixtures through binder and mixture tests,” International Journal of Pavement Engineering, vol. 22, no. 8, pp. 1042–1051, Jul. 2021, doi: 10.1080/10298436.2019.1659262.
    [85] AASTHO TP 101-14, “Standard Tes Method Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep.” AASHTO, Washington, D.C, 2014.
    [86] F. Safaei, J. Lee, L. A. H. D. Nascimento, C. Hintz, and Y. R. Kim, “Implications of warm-mix asphalt on long-term oxidative ageing and fatigue performance of asphalt binders and mixtures,” Road Materials and Pavement Design, vol. 15, no. sup1, pp. 45–61, Jun. 2014, doi: 10.1080/14680629.2014.927050.
    [87] A. Behl, G. Bharath, and S. Chandra, “Characterization of Fatigue Resistance of Warm Mix Binders Using Linear Amplitude Sweep Test,” Int. J. Pavement Res. Technol., vol. 15, no. 2, pp. 433–441, Mar. 2022, doi: 10.1007/s42947-021-00031-3.
    [88] T. A. Kumar, I. J. S. Sandeep, M. R. Nivitha, V. Chowdary, and J. M. Krishnan, “Quantification of Aging Compounds in Evotherm-Modified Warm-Mix Asphalt Binder Using Fourier Transform Infrared Spectroscopy,” Arab J Sci Eng, vol. 44, no. 10, pp. 8429–8437, Oct. 2019, doi: 10.1007/s13369-019-03965-w.
    [89] V. P. Wagh, M. Sukhija, and A. G. and, “Exploring the consequences of reduced aging on the performance of warm mix asphalt binders,” International Journal of Pavement Engineering, vol. 24, no. 2, p. 2270768, 2023, doi: 10.1080/10298436.2023.2270768.
    [90] A. Sukkari, G. Al-Khateeb, W. Zeiada, and H. Ezzat, “Evaluation of aging impact on rheological and chemical characteristics of crumb rubber-modified warm asphalt binders,” Science Progress, vol. 107, no. 4, p. 00368504241300198, Oct. 2024, doi: 10.1177/00368504241300198.
    [91] “An Empirical Relationship Between Asphalt and Water Absorption of Coarse Aggregates in HMA,” vol. 19, 2015.
    [92] M. R. Pouranian, M. Shishehbor, and J. E. Haddock, “Impact of the coarse aggregate shape parameters on compaction characteristics of asphalt mixtures,” Powder Technology, vol. 363, pp. 369–386, Mar. 2020, doi: 10.1016/j.powtec.2020.01.014.
    [93] F. Gong, Y. Liu, Z. You, and X. Zhou, “Characterization and evaluation of morphological features for aggregate in asphalt mixture: A review,” Construction and Building Materials, vol. 273, p. 121989, Mar. 2021, doi: 10.1016/j.conbuildmat.2020.121989.
    [94] M. A. Khasawneh, A. A. Sawalha, M. T. Aljarrah, and M. A. Alsheyab, “Effect of aggregate gradation and asphalt mix volumetrics on the thermal properties of asphalt concrete,” Case Studies in Construction Materials, vol. 18, p. e01725, Jul. 2023, doi: 10.1016/j.cscm.2022.e01725.
    [95] M. Fang, D. Park, J. L. Singuranayo, H. Chen, and Y. Li, “Aggregate gradation theory, design and its impact on asphalt pavement performance: a review,” International Journal of Pavement Engineering, vol. 20, no. 12, pp. 1408–1424, Dec. 2019, doi: 10.1080/10298436.2018.1430365.
    [96] H. Yu, M. Yang, G. Qian, J. Cai, H. Zhou, and X. Fu, “Gradation Segregation Characteristic and Its Impact on Performance of Asphalt Mixture,” J. Mater. Civ. Eng., vol. 33, no. 3, p. 04020478, Mar. 2021, doi: 10.1061/(ASCE)MT.1943-5533.0003535.
    [97] Y. Wu, F. Parker, and P. S. Kandhal, “Aggregate Toughness/Abrasion Resistance and Durability/Soundness Tests Related to Asphalt Concrete Performance in Pavements,” Transportation Research Record: Journal of the Transportation Research Board, vol. 1638, no. 1, pp. 85–93, Jan. 1998, doi: 10.3141/1638-10.
    [98] Y. Dong, Z. Wang, W. Ren, T. Jiang, Y. Hou, and Y. Zhang, “Influence of Morphological Characteristics of Coarse Aggregates on Skid Resistance of Asphalt Pavement,” Materials, vol. 16, no. 14, p. 4926, Jul. 2023, doi: 10.3390/ma16144926.
    [99] M. T. Tiza, J. Agunwamba, and F. Okafor, “Appraisal of reclaimed asphalt pavement as coarse aggregates in cement concrete,” Environmental Research and Technology, vol. 7, no. 1, pp. 27–40, Mar. 2024, doi: 10.35208/ert.1320693.
    [100] S. G. Williams and J. B. Cunningham, “Evaluation of Aggregate Durability Performance Test Procedures,” Department of Civil Engineering University of Arkansas, Arkansas, Final report TRC0905, 2012. Accessed: Feb.01,2025. [Online]. Available: https://www.ardot.gov/wpcontent/uploads/2020/11/TRC0905_Evaluation_of_Aggregate_Durability_Performance_Test_Procedures.pdf
    [101] F. Bosi, C. Biagioni, and R. Oberti, “On the Chemical Identification and Classification of Minerals,” Minerals, vol. 9, no. 10, p. 591, Sep. 2019, doi: 10.3390/min9100591.
    [102] S. Shu, C. Zhuang, R. Ren, B. Xing, K. Chen, and G. Li, “Effect of Different Anti-Stripping Agents on the Rheological Properties of Asphalt,” Coatings, vol. 12, no. 12, p. 1895, Dec. 2022, doi: 10.3390/coatings12121895.
    [103] S. Haider, I. Hafeez, S. Bilal Ahmed Zaidi, M. Ali Nasir, and M. Rizwan, “A pure case study on moisture sensitivity assessment using tests on both loose and compacted asphalt mixture,” Construction and Building Materials, vol. 239, p. 117817, Apr. 2020, doi: 10.1016/j.conbuildmat.2019.117817.
    [104] Y. Yin, H. Chen, D. Kuang, L. Song, and L. Wang, “Effect of chemical composition of aggregate on interfacial adhesion property between aggregate and asphalt,” Construction and Building Materials, vol. 146, pp. 231–237, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.061.
    [105] J. Vinet-Cantot, V. Gaudefroy, F. Delfosse, E. Chailleux, and E. Crews, “Stripping at the Bitumen–Aggregate Interface: A Laboratory Method to Assess the Loss of Chemical Adhesion,” Energy Fuels, vol. 33, no. 4, pp. 2641–2650, Apr. 2019, doi: 10.1021/acs.energyfuels.8b03410.
    [106] N. Roy, S. Sarkar, K. K. Kuna, and S. K. Ghosh, “Effect of coarse aggregate mineralogy on micro-texture deterioration and polished stone value,” Construction and Building Materials, vol. 296, p. 123716, Aug. 2021, doi: 10.1016/j.conbuildmat.2021.123716.
    [107] P. Mirzababaei, “Effect of zycotherm on moisture susceptibility of Warm Mix Asphalt mixtures prepared with different aggregate types and gradations,” Construction and Building Materials, vol. 116, pp. 403–412, Jul. 2016, doi: 10.1016/j.conbuildmat.2016.04.143.
    [108] G. H. Hamedi, M. R. Esmaeeli, V. N. M. Gilani, and S. M. Hosseinian, “The Effect of Aggregate-Forming Minerals on Thermodynamic Parameters Using Surface Free Energy Concept and Its Relationship with the Moisture Susceptibility of Asphalt Mixtures,” Hindawi Advances in Civil Engineering, vol. 2021, pp. 1–15, 2021, doi: https://doi.org/10.1155/2021/8818681.
    [109] A. Cala and S. Caro, “Predictive quantitative model for assessing the asphalt-aggregate adhesion quality based on aggregate chemistry,” Road Materials and Pavement Design, vol. 23, no. 7, pp. 1523–1543, Jul. 2022, doi: 10.1080/14680629.2021.1900896.
    [110] School of Civil Engineering, Universiti Teknologi Malaysia et al., “Rutting and Moisture Damage Evaluation of Warm Mix Asphalt Incorporating POFA Modified Bitumen,” IJEAT, vol. 9, no. 1, pp. 90–98, Oct. 2019, doi: 10.35940/ijeat. A1052.109119.
    [111] M. N. S. Oyan and Z. Hossain, “Feasibility of Warm Mix Asphalt in Arkansas,” Int. J. Pavement Res. Technol., Aug. 2024, doi: 10.1007/s42947-024-00463-7.
    [112] M. O. Hamzah, B. Golchin, A. Jamshidi, and E. Chailleux, “Evaluation of Rediset for use in warm-mix asphalt: a review of the literatures,” International Journal of Pavement Engineering, vol. 16, no. 9, pp. 809–831, Oct. 2015, doi: 10.1080/10298436.2014.961020.
    [113] A. Sharma and D. P. Kumar, “Use of Warm Mix Additives in Bituminous Layers,” 2018.
    [114] M. Sukhija and N. Saboo, “A comprehensive review of warm mix asphalt mixtures-laboratory to field,” Construction and Building Materials, vol. 274, p. 121781, Mar. 2021, doi: 10.1016/j.conbuildmat.2020.121781.
    [115] Y. Karakaya, B. V. Bingol, and M. Guler, “Evaluation of Laboratory Performance of Zycotherm Additive for Extended Moisture Resistance of HMA Pavements,” 2019.
    [116] F. Ahmed and H. U. Bahia, “Using Gyratory Compactor to Measure Mechanical Stability of Asphalt Mixtures,” University of Wisconsin – Madison Department of Civil and Environmental Engineering, Madison, Technical Report WHRP 05-02, 2004. Accessed: Jul.17,2024. [Online]. Available:https://minds.wisconsin.edu/bitstream/handle/1793/6907/05%2002.pdf?sequence=1&isAllowed=y
    [117] S. Dessouky, A. Pothuganti, L. F. Walubita, and D. Rand, “Laboratory Evaluation of the Workability and Compactability of Asphaltic Materials prior to Road Construction,” J. Mater. Civ. Eng., vol. 25, no. 6, pp. 810–818, Jun. 2013, doi: 10.1061/(ASCE)MT.1943-5533.0000551.
    [118] Ö. C. Pamuk, “Effect of Warm Mix Additives on Compactabilitiy of Mixtures,” Middle East Technical University, 2019.
    [119] H. I. Ozturk and O. C. Pamuk, “Evaluation of Warm Mix Asphalt compactability indices using laboratory compactors from a temperature perspective,” International Journal of Pavement Engineering, vol. 23, no. 10, pp. 3621–3632, Aug. 2022, doi: 10.1080/10298436.2021.1910824.
    [120] T. Gandhi, F. Xiao, and S. N. Amirkhanian, “Estimating Indirect Tensile Strength of Mixtures Containing Anti-Stripping Agents Using an Artificial Neural Network Approach,” 2009.
    [121] M. Panda, M. M. Padhi, and J. P. Giri, “Use of emulsion for warm mix asphalt,” International Journal of Transportation Science and Technology, vol. 6, no. 1, pp. 78–85, Jun. 2017, doi: 10.1016/j.ijtst.2017.04.001.
    [122] C. Zhu, J. Tang, H. Zhang, and H. Duan, “Effect of liquid anti-stripping agents on moisture sensitivity of crumb rubber modified asphalt binders and mixtures,” Construction and Building Materials, vol. 225, pp. 112–119, Nov. 2019, doi: 10.1016/j.conbuildmat.2019.07.173.
    [123] R. T. Abd El-Hakim, J. Epps, A. Epps Martin, and E. Arámbula-Mercado, “Laboratory and field investigation of moisture susceptibility of hot and warm mix asphalts,” International Journal of Pavement Engineering, vol. 22, no. 11, pp. 1389–1398, Sep. 2021, doi: 10.1080/10298436.2019.1694150.
    [124] S. R. Omranian, M. O. Hamzah, L. Gungat, and S. Y. Teh, “Evaluation of asphalt mixture behavior incorporating warm mix additives and reclaimed asphalt pavement,” Journal of Traffic and Transportation Engineering (English Edition), vol. 5, no. 3, pp. 181–196, Jun. 2018, doi: 10.1016/j.jtte.2017.08.003.
    [125] P. V. Shivaprasad, F. Xiao, and S. N. Amirkhanian, “Evaluation of moisture sensitivity of stone matrix asphalt mixtures using polymerised warm mix asphalt technologies,” International Journal of Pavement Engineering, vol. 13, no. 2, pp. 152–165, Apr. 2012, doi: 10.1080/10298436.2011.643792.
    [126] S. I. Vahora and C. B. Mishra, “Investigating the Performance of Warm Mix Additives,” International Journal of Current Engineering and Technology, vol. 7, no. 3, pp. 101–1015, 2017, Accessed: Sep. 30, 2024. [Online]. Available: http://inpressco.com/category/ijcet
    [127] Z. Leng, A. Gamez, and I. L. Al-Qadi, “Mechanical Property Characterization of Warm-Mix Asphalt Prepared with Chemical Additives,” J. Mater. Civ. Eng., vol. 26, no. 2, pp. 304–311, Feb. 2014, doi: 10.1061/(ASCE)MT.1943-5533.0000810.
    [128] P. E. Sebaaly, “Comparison of Lime and Liquid Additives on the Moisture Damage of Hot Mix Asphalt Mixtures,” National Lime Association.
    [129] A. E. Martin et al., “Evaluation of the Moisture Susceptibility of WMA Technologies,” Transportation Research Board, Washington, D.C., Final report REPORT 763, Feb. 2014. doi: 10.17226/22429.
    [130] M. R. M. Hasan, M. O. Hamzah, and T. S. Yee, “Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm,” presented at the Proceedings of the International Conference of Global Network for Innovative Technology and Awam International Conference in Civil Engineering (IGNITE-AICCE’17): Sustainable Technology and Practice for Infrastructure and Community Resilience, Penang, Malaysia, 2017, p. 090001. doi: 10.1063/1.5005731.
    [131] M. Ameri, M. Vamegh, S. F. C. Naeni, and M. Molayem, “Moisture susceptibility evaluation of asphalt mixtures containing Evonik, Zycotherm and hydrated lime,” Construction and Building Materials, vol. 165, pp. 958–965, 2018.
    [132] D. J. Signore B. W. Tsai, and J., “Warm-Mix Asphalt Study: Laboratory Test Results for AkzoNobel RedisetTM WMX,” University of California Pavement Research Center UC Davis, UC Berkeley, Chicago, Final report UCPRC-CR-2010-01, 2010.
    [133] A. K. Banerji, H. Alam, and A. Das, “Effect of Zycotherm on Properties of Porous Friction Course Mixes,” vol. 3, no. 1, 2022.
    [134] K. S. Bonnetti, K. Nam, and H. U. Bahia, “Measuring and Defining Fatigue Behavior of Asphalt Binders,” Transportation Research Record: Journal of the Transportation Research Board, vol. 1810, no. 1, pp. 33–43, Jan. 2002, doi: 10.3141/1810-05.
    [135] M. Faramarzi, B. Golestani, and K. W. Lee, “Improving moisture sensitivity and mechanical properties of sulfur extended asphalt mixture by nano-antistripping agent,” Construction and Building Materials, vol.133, pp.534–542, Feb. 2017, doi: 10.1016/j.conbuildmat.2016.12.038.
    [136] D. Jones, B. W. Tsai, and J. Signore, “Warm-Mix Asphalt Study: Laboratory Test Results for AkzoNobel RedisetTTMM WMX”.
    [137] M. Rezapour and S. S. Wulff, “Rut Performance of In Situ Warm Mix Asphalt Overlays with Evotherm 3G in North Dakota,” Journal of Engineering, vol. 2019, pp. 1–7, Apr. 2019, doi: 10.1155/2019/5719716.
    [138] F. Yin, A. Epps Martin, and E. Arámbula-Mercado, “Warm-Mix Asphalt Moisture Susceptibility Evaluation for Mix Design and Quality Assurance,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2575, no. 1, pp. 39–47, Jan. 2016, doi: 10.3141/2575-05.
    [139] G. Valdes-Vidal, A. Calabi-Floody, and E. Sanchez-Alonso, “Performance evaluation of warm mix asphalt involving natural zeolite and reclaimed asphalt pavement (RAP) for sustainable pavement construction,” Construction and Building Materials, vol. 174, pp. 576–585, Jun. 2018, doi: 10.1016/j.conbuildmat.2018.04.149.
    [140] Z. Arega and A. Bhasin, “Binder Rheology and Performance in Warm Mix Asphalt,” Texas Department of Transportation, Texas, Final Report FHWA/TX-12/0-6591-1, Aug. 2012. [Online]. Available: https://library.ctr.utexas.edu/ctr-publications/0-6591-1.pdf
    [141] R. West, C. Rodezno, G. Julian, and B. Prowell, “Engineering Properties and Field Performance of Warm Mix Asphalt Technologies,” National Cooperative Highway Research Program Transportation Research Board of The National Academies, FINAL REPORT NCHRP 0947A, Feb. 2014. [Online]. Available: https://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP09-47A_FR-VolumeI.pdf.
    [142] EPA,“Overview of Greenhouse Gases,” GreenhouseGas Emissions. United State. Accessed: Feb.10,2025.[Online]. Available: https://www.epa.gov/ghgemissions/overview-greenhouse-gases.
    [143] National Institute of and Environmental Health Sciences, “Human Health Impacts of Climate Change.” USA. Accessed: Feb. 10, 2025. [Online]. Available: https://www. niehs.nih.gov/research/programs/climatechange/health_impacts.
    [144] A. Chowdhury and J. W. Button, “A Review of Warm Mix Asphalt,” Texas Transportation Institute Texas A&M University System College Station, Texas, SWUTC/08/473700-00080-1, 2008.
    [145] A. Diab, C. Sangiorgi, R. Ghabchi, M. Zaman, and A. M. Wahaballa, “Warm Mix Asphalt (WMA) technologies: Benefits and drawbacks—a literature review,” in Functional Pavement Design, 1st ed., S. Erkens, X. Liu, K. Anupam, and Y. Tan, Eds., CRC Press, 2016, pp. 1145–1154. doi: 10.1201/9781315643274-126.
    [146] H. Luo et al., “Low-temperature cracking resistance, fatigue performance and emission reduction of a novel silica gel warm mix asphalt binder,” Construction and Building Materials, vol. 231, p. 117118, Jan. 2020, doi: 10.1016/j.conbuildmat.2019.117118.
    [147] A. Behnood, “A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties,” Journal of Cleaner Production, vol. 259, p. 120817, Jun. 2020, doi: 10.1016/j.jclepro.2020.120817.
    [148] H. A. Obaid et al., “Properties of Modified Warm-Mix Asphalt Mixtures Containing Different Percentages of Reclaimed Asphalt Pavement,” Energies, vol. 15, no. 20, p. 7813, Oct. 2022, doi: 10.3390/en15207813.
    [149] Industrial Development Bureau, Ministry of Economic Affairs, “[T22 Hualien] Exploring Hualien’s Thousand-year-old Mines Revamping Marble and Invoking Everlasting Emotions in a Brand New Space,” Taiwan Design Research Institute, no. Online First, Apr. 2023.Accessed:May31,2024. [Online]. Available: https://www.tdri.org.tw/42819/?lang=en
    [150] Element to stoichiometric oxide conversion factors. [Online]. Available: https://www.jcu.edu.au/advanced-analytical-centre/resources/element-to-stoichiometric-oxide-conversion-factors
    [151] AASHTO T 240-13, “Standard method of test for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test).” AASHTO, Washington, D.C, 2013.
    [152] Federal Highway Administration FHWA-HRT-15-054, “Standart Test for Universal Simple Aging Test (USAT).” Federal Highway Administration Georgetown Pike McLean, VA. [Online]. Available: www.fhwa.dot.gov/research
    [153] ASTM Standard D946/D946M-20, “Standard Test Method Specification for Penetration-Graded Asphalt Binder for Use in Pavement Construction.” ASTM International, West Conshohocken, PA, 2020. doi: 10.1520/D0946_D0946M-20.
    [154] ASTM Standard D36, “Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus).” ASTM International, West Conshohocken, PA, 2020. doi: 10.1520/MNL10830M.
    [155] A. Woszuk, M. Wróbel, and W. Franus, “Influence of Waste Engine Oil Addition on the Properties of Zeolite-Foamed Asphalt,” Materials, vol. 12, no. 14, p. 2265, Jul. 2019, doi: 10.3390/ma12142265.
    [156] ASTM Standard D 70/D70M-21, “Standard Test Method for Specific Gravity and Density of Semi-Solid Asphalt Binder (Pycnometer Method).” ASTM International, West Conshohocken, PA, 2021.
    [157] ASTM Standard D4124-09, “Standard Test Method for Separation of Asphalt into Four Fractions.” ASTM International, West Conshohocken, PA, 2018.
    [158] R. Salehfard, H. Behbahani, D. Dalmazzo, and E. Santagata, “Effect of colloidal instability on the rheological and fatigue properties of asphalt binders,” Construction and Building Materials, vol. 281, p. 122563, Apr. 2021, doi: 10.1016/j.conbuildmat.2021.122563.
    [159] R. Kleizienė, M. Panasenkienė, and A. Vaitkus, “Effect of Aging on Chemical Composition and Rheological Properties of Neat and Modified Bitumen,” Materials, vol. 12, no. 24, p. 4066, Dec. 2019, doi: 10.3390/ma12244066.
    [160] Y. Xu, E. Zhang, and L. Shan, “Effect of SARA on Rheological Properties of Asphalt Binders,” J. Mater. Civ. Eng., vol. 31, no. 6, p. 04019086, Jun. 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002723.
    [161] M. Paliukaitė, A. Vaitkus, and A. Zofka, “Evaluation of bitumen fractional composition depending on the crude oil type and production technology,” in the 9th International Conference “Environmental Engineering 2014,” Vilnius, Lithuania: Vilnius Gediminas Technical University Press “Technika” 2014, 2014. doi: 10.3846/enviro.2014.162.
    [162] AASTHO T 315-12, “Standard method of test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR).” AASHTO, Washington, D.C, 2012.
    [163] S. Ghaffarpour Jahromi, “Introduction of a simple method for prediction of the rutting resistance factor of nanoclay-modified bitumen,” International Journal of Pavement Engineering, vol. 20, no. 2, pp. 216–221, Feb. 2019, doi: 10.1080/10298436.2017.1279488.
    [164] M. Chaudhary, N. Saboo, and A. Gupta, “Introduction of a New Parameter to Quantify the Fatigue Damage in Asphalt Mastics and Asphalt Binder,” Coatings, vol. 11, no. 7, p. 828, Jul. 2021, doi: 10.3390/coatings11070828.
    [165] ASTM Standard D 7405-20, “Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer.” ASTM International, West Conshohocken, PA, 2020. doi: 10.1520/D7405-20.
    [166] AASTHO T350, “Standard Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR).” Washington, DC: AASHTO, 2013.
    [167] AASHTO T 391-20, “Standard Test Method Estimating Fatigue Resistence of Asphalt BinderUsing the Linier Amplitude Sweep.” AASHTO, Washington, D.C, 2020.
    [168] FHWA-HRT-15-054, “Standard Test the Universal Simple Aging Test.” Faderal Highway Administration. [Online]. Available: https://highways.dot.gov/research
    [169] “AASTHO TP101 Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep.pdf.”
    [170] S. W. Park and R. A. Schapery, “Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series,” International Journal of Solids and Structures, vol. 36, no. 11, pp. 1653–1675, Apr. 1999, doi: 10.1016/S0020-7683(98)00055-9.
    [171] C. Hintz and H. Bahia, “Simplification of Linear Amplitude Sweep Test and Specification Parameter,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2370, no. 1, pp. 10–16, Jan. 2013, doi: 10.3141/2370-02.
    [172] ASTM Standard C136/C136M − 19, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.” ASTM International, West Conshohocken, PA, 2019. doi: 10.1520/C0136_C0136M-19.
    [173] ASTM Standard C128−5, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.” ASTM International, West Conshohocken, PA, 2015.
    [174] ASTM Standard C127 − 15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate.” ASTM International, West Conshohocken, PA, 2015.
    [175] ASTM Standard D4791-19, “Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate.” ASTM International, West Conshohocken, PA, 2019.
    [176] AASTHO R35-22, “Superpave Volumetric Design for Asphalt Mixture.” Washington, DC: AASHTO, 2022.
    [177] ASTM Standard D2489-16, “Practice for Estimating Degree of Particle Coating of Bituminous-Aggregate Mixtures.” ASTM International, West Conshohocken, PA, 2024. Accessed: Jul. 11, 2024. [Online]. Available: http://www.astm.org/cgibin/resolver.cgi?D2489D2489M-16
    [178] Z. A. Muis, “Measurement of Anti-Stripping Agent Content in Asphalt Mixture with Colorimetric Test,” GEOMATE, vol. 17, no. 63, Nov. 2019, doi: 10.21660/2019.63.94587.
    [179] M. Ameri, M. Vamegh, S. F. Chavoshian Naeni, and M. Molayem, “Moisture susceptibility evaluation of asphalt mixtures containing Evonik, Zycotherm and hydrated lime,” Construction and Building Materials, vol. 165, pp. 958–965, Mar. 2018, doi: 10.1016/j.conbuildmat.2017.12.113.
    [180] ASTM Standard D3625/D3625M-20, “Standard Test Practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water.” ASTM International, West Conshohocken, PA, 2020. Accessed: Jul. 11, 2024. [Online]. Available: http://www.astm.org/cgi-bin/resolver.cgi?D3625D3625M-20
    [181] AASHTO R35-17, “Standard Practice for Superpave Volumetric Design for Asphalt Mixtures.” AASHTO, Washington, D.C, 2019.
    [182] Z. S. M. Khaled, A. H. Abed, and T. S. Nsayif, “Significance of using a Superpave Gyratory Compactor to Simulate Field Compaction of Fine Grained Soil,” Al-Nahrain Journal for Engineering Sciences (NJES), vol. 20, no. 3, pp. 641–646, 2017.
    [183] P. Caputo, P. Calandra, R. Vaiana, V. Gallelli, G. De Filpo, and C. Oliviero Rossi, “Preparation of Asphalt Concretes by Gyratory Compactor: A Case of Study with Rheological and Mechanical Aspects,” Applied Sciences, vol. 10, no. 23, p. 8567, Nov. 2020, doi: 10.3390/app10238567.
    [184] H. Bahia, “Using the Gyratory Compactor to Measure Mechanical Stability of Asphalt Mixtures,” Wisconsin Department of Transportation Division of Transportation Infrastructure Development Research Coordination Section, Madison, WHRP 05-02, 2004.
    [185] E. Yeung, A. Braham, and J. Barnat, “Exploring the Effect of Asphalt-Concrete Fabrication and Compaction Location on Six Compaction Metrics,” J. Mater. Civ. Eng., vol. 28, no. 12, p. 04016163, Dec. 2016, doi: 10.1061/(ASCE)MT.1943-5533.0001682.
    [186] AASTHO T 283, “Resistance of compacted asphalt mixtures to moisture-induced damage.” AASHTO, Washington, D.C, 2014.
    [187] ASTM Standard D6931-12, “Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures.” ASTM International, West Conshohocken, PA, 2012. doi: 10.1520/D6931-12.
    [188] P. B. Blankenship, “Caution of Indirect Tensile Strength-Only Specifications for Asphalt Mixtures.” Blankenship Asphalt Tech and Training, PLLC, Feb. 05, 2019.
    [189] H. Taherkhani, S. Zoorob, and F. Noorian, “Evaluation of the indirect tensile strength of asphalt concrete containing reclaimed asphalt pavement and waste oils using response surface method,” IJTE, vol. 8, no. 2, pp. 115–132, Oct. 2020, doi: 10.22119/ijte.2020.191984.1486.
    [190] TEX-245-F,“Cantabro Loss.”Texas Departemen of Transportation, 2014. [Online]. Available: https://ftp.dot.state.tx.us/pub/txdot-info/cst/TMS/200-F_series/archives/245 1005.pdf
    [191] ASTM Standard C131 − 03, “Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregateby Abrasion and Impact in the Los Angeles Machine.” ASTM International, West Conshohocken, PA, 2003.
    [192] ASTM Standard D8225-19, “Standard Test Methode for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature.” ASTM International, West Conshohocken, PA, 2019.
    [193] AASHTO T 324-04, “Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot-Mix Asphalt (HMA).” AASHTO, Washington, D.C.
    [194] A. Romier, M. Audeon, J. David, Y. Martineau, and F. Olard, “Low-Energy Asphalt with Performance of Hot-Mix Asphalt,” Transportation Research Record, 1962.
    [195] E. Administration, “2022 Electricity Carbon Emission Factor,” Ministry of Economic Affair.Accessed: Feb. 10, 2025. [Online]. Available:https://www.moeaea.gov.tw/ECW/English/content/Content.aspx?menu_id=24200.
    [196] F. and R. A. of the U. K. Department for Environment, “UK government GHG conversion factors for company reporting,” London, UK: DECC, DEFRA, 2016.
    [197] E. Administration, “2022 Electricity Carbon Emission Factor.” Ministry of Economic Affair, 2022.Accessed: Feb.10,2025.[Online]. Available:https://www.moeaea.gov.tw/ECW/English/content/Content.aspx?menu_id=24200.
    [198] O. A. Ehinola, O. A. Falode, and G. Jonathan, “Softening point and Penetration Index of bitumen from parts of Southwestern Nigeria,” 2012.
    [199] R. Kleizienė, M. Panasenkienė, and A. Vaitkus, “Effect of Aging on Chemical Composition and Rheological Properties of Neat and Modified Bitumen,” Materials, vol. 12, no. 24, p. 4066, Dec. 2019, doi: 10.3390/ma12244066.
    [200] I. G. D. N. Camargo, B. Hofko, J. Mirwald, and H. Grothe, “Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition,” Materials, vol. 13, no. 19, p. 4438, Oct. 2020, doi: 10.3390/ma13194438.
    [201] D. Ge et al., “Correlation of DSR Results and FTIR’s Carbonyl and Sulfoxide Indexes: Effect of Aging Temperature on Asphalt Rheology,” J. Mater. Civ. Eng., vol. 31, no. 7, p. 04019115, Jul. 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002781.
    [202] X. Zhang, B. Tang, X. Cao, J. Li, and H. Zhu, “Study on the release characteristics of volatile organic compounds from different aged asphalt,” Journal of Cleaner Production, vol. 423, p. 138774, Oct. 2023, doi: 10.1016/j.jclepro.2023.138774.
    [203] F. L. Roberts, P. S. Kandhal, E. R. Brown, D.-Y. Lee, and T. W. Kennedy, Hot mix asphalt materials, mixture design and construction., Second Edition. United States of America: National Asphalt Pavement Association Research and Education Foundation., 1996.
    [204] H. Wang et al., “Effects of Field Aging on Material Properties and Rutting Performance of Asphalt Pavement,” Materials, vol. 16, no. 1, p. 225, Dec. 2022, doi: 10.3390/ma16010225.
    [205] N. Lan, N. May, V. Tu, T. Quyet, L. Hai, and T. Trung, “The influence of short and long term aging on the dynamic modulus of recycled polyethylene asphalt mixture,” vol. 25, no. 6, pp. 1205–1216, 2022.
    [206] A. W. Ali, H. H. Kim, M. Mazumder, M.-S. Lee, and S.-J. Lee, “Multiple Stress Creep Recovery (MSCR) characterization of polymer modified asphalt binder containing wax additives,” International Journal of Pavement Research and Technology, vol. 11, pp. 774–788, 2018, doi: 10.6135/ijprt.201805/PP_11(7).0012.
    [207] Honeywell International Inc, “Jnr Difference and Quality of Polymer Modified Bitumens,” Honeywell, pp.14,2023. [Online]. Available: https://advanced materials. honeywell.com/content/dam/advanced materials/en/documents/document-lists/additives/technical specs/1175600%20AM%20Specialty%20Additives%20Asphalt%20Technical%20Bulletin%2002%20%283%29.pdf
    [208] M. A. Notani, P. Hajikarimi, F. M. Nejad, and A. Khodaii, “Rutting resistance of toner-modified asphalt binder and mixture,” Int. J. Pavement Res. Technol., vol. 13, no. 1, pp. 1–9, Jan. 2020, doi: 10.1007/s42947-019-0131-z.
    [209] Z. Hossain, D. Ghosh, M. Zaman, and K. Hobson, “Use of the Multiple Stress Creep Recovery (MSCR) Test Method to Characterize Polymer-Modified Asphalt Binders,” Journal of Testing and Evaluation, vol. 44, no. 1, pp. 507–520, Jan. 2016, doi: 10.1520/JTE20140061.
    [210] M. A. Ishaq and F. Giustozzi, “Correlation between Rheological Fatigue Tests on Bitumen and Various Cracking Tests on Asphalt Mixtures,” Materials, vol. 14, no. 24, p. 7839, Dec. 2021, doi: 10.3390/ma14247839.
    [211] H. Ziari, A. Goli, and A. Amini, “Effect of Crumb Rubber Modifier on the Performance Properties of Rubberized Binders,” J. Mater. Civ. Eng., vol. 28, no. 12, p. 04016156, Dec. 2016, doi: 10.1061/(ASCE)MT.1943-5533.0001661.
    [212] M. Ameri, D. Mirzaiyan, and A. Amini, “Rutting Resistance and Fatigue Behavior of Gilsonite-Modified Asphalt Binders,” J. Mater. Civ. Eng., vol. 30, no. 11, p. 04018292, Nov. 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002468.
    [213] L. M. Diógenes, I. S. Bessa, V. T. F. Castelo Branco, and E. Mahmoud, “The influence of stone crushing processes on aggregate shape properties,” Road Materials and Pavement Design, vol. 20, no. 4, pp. 877–894, May 2019, doi: 10.1080/14680629.2017.1422792.
    [214] S.-C. Chen, S.-Y. Zou, and H.-M. Hsu, “Effects of Recycled Fine Aggregates and Inorganic Crystalline Materials on the Strength and Pore Structures of Cement-Based Composites,” Crystals, vol. 11, no. 6, p. 587, May 2021, doi: 10.3390/cryst11060587.
    [215] X. Gan, W. Zhang, J. Li, H. Tang, and P. Zhong, “Influence of Aggregate and Asphalt Type on the Bond Strength between Asphalt and Aggregates and Its Self-Healing Properties,” Advances in Materials Science and Engineering, vol. 2022, pp. 1–10, Oct. 2022, doi: 10.1155/2022/1353102.
    [216] R. F. Bonaquist, Mix design practices for warm mix asphalt. in NCHRP report, no. 691. Washington, D.C: Transportation Research Board, 2011.
    [217] H. Y. Ahmed, A. M. Othman, M. D. Hashem, and S. A. Abdalla, “Effect of Chemical Additives on the Performance of Asphalt Pavement Exposed to Wastewater,” vol. 49, no. 1, 2021.
    [218] F. Zhou, “Development of an IDEAL Cracking Test for Asphalt Mix Design, Quality Control and Quality Assurance,” Texas A&M Transportation Institute, Washington, DC, Final Report for NCHRP IDEA Project 195 NCHRP 20-30/IDEA 195, Jan. 2019. [Online]. Available: https://onlinepubs.trb.org/onlinepubs/IDEA/FinalReports/Highway/NCHRP195.pdf
    [219] X. Shu, B. Huang, X. Chen, and L. Robison, “Effects of Coarse Aggregate angularity on Rutting Performance of HMA,” Pavement Mechanics and Performance, 2006, doi: doi:10.1061/40866(198)16.
    [220] C. Rodezno, G. C. Hurley, B. D. Prowell, and B. Frank, “Warm-Mix Asphalt Technologies- State of The Knowledge and Best Practices.” National Asphalt Association (NAPA), Apr. 2025.
    [221] S. Wang, W. Huang, and A. Kang, “Evaluation of Aging Characteristics of High-Viscosity Asphalt: Rheological Properties, Rutting Resistance, Temperature Sensitivity, Homogeneity, and Chemical Composition,” J. Mater. Civ. Eng., vol. 33, no. 7, p. 04021149, Jul. 2021, doi: 10.1061/(ASCE)MT.1943-5533.0003777.
    [222] S. Wang, W. Huang, Q. Lv, C. Yan, P. Lin, and M. Zheng, “Influence of different high viscosity modifiers on the aging behaviors of SBSMA,” Construction and Building Materials, vol. 253, p. 119214, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.119214.
    [223] H. Zhang, Z. Chen, G. Xu, and C. Shi, “Evaluation of aging behaviors of asphalt binders through different rheological indices,” Fuel, vol. 221, pp. 78–88, Jun. 2018, doi: 10.1016/j.fuel.2018.02.087.
    [224] J. L. O. Lucas Júnior, L. F. A. L. Babadopulos, and J. B. Soares, “Aggregate–binder adhesiveness assessment and investigation of the influence of morphological and physico-chemical properties of mineral aggregates,” Road Materials and Pavement Design, vol. 20, no. sup1, pp. S79–S94, Apr. 2019, doi: 10.1080/14680629.2019.1588773.
    [225] Y. Yin, H. Chen, D. Kuang, L. Song, and L. Wang, “Effect of chemical composition of aggregate on interfacial adhesion property between aggregate and asphalt,” Construction and Building Materials, vol. 146, pp. 231–237, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.061.
    [226] X. Ji, E. Sun, H. Zou, Y. Hou, and B. Chen, “Study on the multiscale adhesive properties between asphalt and aggregate,” Construction and Building Materials, vol. 249, p. 118693, Jul. 2020, doi: 10.1016/j.conbuildmat.2020.118693.

    QR CODE
    :::