| 研究生: |
張儷瓊 Li-Chiung Chang |
|---|---|
| 論文名稱: |
FoxOs 大量表現對肌肉細胞末期分化的影響 Effects of FoxOs over-expression on terminal myogenic differentiation |
| 指導教授: |
陳盛良
Chen shen-liang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 肌肉 、肌肉細胞分化 、FoxO |
| 外文關鍵詞: | muscle, differentiation, FoxO |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
FoxO家族含有4名成員(FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX, FoxO6),這些成員上均有一段consensus DNA 序列 TTGTTTAC,其功能相當於轉錄因子。FoxOs轉錄因子在調節細胞的分化、增殖、代謝及生存等相關功能上扮演重要的角色。近來研究發現FoxOs可經由PI3K的磷酸化來調控下游基因的表現,而影響肌肉的分化。一些研究指出FoxO3在骨骼肌當中表現會造成肌肉萎縮,但其他成員對肌肉造成相關性影響的功能及機制並未深入探討。為了觀察FoxOs在肌肉細胞生長及分化中所扮演的角色,因此在本研究中利用反轉錄病毒來穩定的大量表達FoxOs在肌肉纖維母細胞中。在大量表達FoxOs的肌肉細胞株中經誘導細胞分化後,觀察其型態上的差異,發現在大量表現FoxO1-AAA (FoxO1基因持續表現的突變體)、FoxO6的細胞株中,其分化的功能有被抑制的現象,其他細胞株與控制組對照之下並無明顯差異。進而抽取其不同時期 (細胞快速生長時期、細胞聚合時期、細胞分化時期) 的RNA並做RT-PCR來觀察各個FoxOs對肌肉分化相關性的特殊基因的影響。從實驗數據中發現在大量表現FoxO1-AAA的細胞株在經誘導分化之後,MRFs家族 (MyoD、MEF2C、Myf5及Myogenin) 的RNA表現量均有下降之情形,MRFs家族是調控肌肉特定基因轉錄的因子。因此可推測造成大量表現FoxO1-AAA細胞株不分化的原因可能是藉由調控MRFs基因來控制細胞生長及分化。要確定造成細胞不分化的相關機制是經由哪些訊息所影響的,因此我們在這些大量表現FoxOs而不分化的細胞株中,給予胰島素,Y27632及A23187處理,來觀察它們對於肌肉細胞末期分化所造成的影響,在實驗中發現當大量表現FoxO1-AAA時原本經誘導而不分化的型態下,在加入了胰島素時肌肉細胞反而走向分化。在實驗中觀察到葡萄糖濃度對肌肉細胞分化有差異性影響,因此我們想了解這些大量表現FoxOs並不分化的細胞株在處理胰島素之後對葡萄糖代謝是否會造成影響,所以利用glucose uptake來進行初步的實驗,並且利用流式細胞儀來觀察FoxOs在cell cycl中所造成的影響。
FoxO family contains four members (FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX, FoxO6) that function as transcriptional activators by binding as monomer to the consensus DNA sequence TTGTTTAC. FoxO transcription factors have been implicated in regulating diverse cellular functions including differentiation, metabolism, proliferation, and survival. Recent studies have revealed that PI3K can directly regulate gene expression through phosphorylation. Some studies have shown that FoxO3 can promote atrophy in skeletal muscle. However, their regulation and function in skeletal muscle have not been thoroughly understood. In this study, we have constructed stable clones of FoxO-overexpressed myoblasts by retrovirus transduction. FoxO1-AAA、FoxO6 over-expressed cells lose their ability to differentiate into myotubes, but not the other FoxOs over-expressed stable clones. The gene expression patterns of the later after differentiation were not significantly different from those of control cells. To identify how the differentiation of FoxO1-AAA overexpressed myoblasts were inhibited, we treated them with insulin, Y27632, and A23187, and then observed their influence on terminal myogenic differentiation. Our results revealed that treating the undifferentiated FoxO1-AAA over-expressed cells with insulin would provoke their differentiation. Moreover, we also found the maturity of myotube was changed when treated with different glucose concentrations. Finally we investigated whether well-differentiation of FoxO1-AAA over-expressed cells by insulin treatment was due to effects on glucose metabolism. We also examined the glucose uptake by 2-[1,2-3H(N)]-Deoxy-D-Glucose (2-DG) and the change of cell cycle by flow cytometry.
1. Ordahl CP, Le Douarin NM 1992 Two myogenic lineages within the developing somite. Development 114:339-353
2. Christ B, Ordahl CP 1995 Early stages of chick somite development. Anatomy and Embryology 191:381-396
3. Christ B, Schmidt C, Huang R, Wilting J, Brand-Saberi B 1997 Segmentation of the vertebrate body. Anatomy and Embryology 197:1-8
4. Christ B JH, Jacob M 1972 Experimentelle Untersuchungen zur Somitenentwicklung beim Hühnerembryo. Z Anat Entwicklungsgesch 138:82–97
5. Christ B, Jacob M, Jacob HJ 1983 On the origin and development of the ventrolateral abdominal muscles in the avian embryo. Anatomy and Embryology 166:87-101
6. Noden DM 1983 The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. American Journal of Anatomy 168:257-276
7. Christ B, Jacob HJ, Jacob M 1977 Experimental analysis of the origin of the wing musculature in avian embryos. Anatomy and Embryology 150:171-186
8. Buffinger N, Stockdale FE 1994 Myogenic specification in somites: induction by axial structures. Development 120:1443-1452
9. Williams BA, Ordahl CP 1994 Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120:785-796
10. Relaix F, Rocancourt D, Mansouri A, Buckingham M 2005 A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948-953
11. Tajbakhsh S 2003 Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle. Current Opinion in Genetics & Development 13:413-422
12. Yun K, Wold B 1996 Skeletal muscle determination and differentiation: Story of a core regulatory network and its context. Current Opinion in Cell Biology 8:877-889
13. Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y-i, Fujisawa-Sehara A 1995 A metalloprotease-disintegrin participating in myoblast fusion. Nature 377:652-656
14. Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA 1999 Reduced Differentiation Potential of Primary MyoD-/- Myogenic Cells Derived from Adult Skeletal Muscle. J Cell Biol 144:631-643
15. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M 2006 Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91-102
16. Mauro A 1961 Satellite cell of skeletall muscle fibers. The Journal of Biophysical and Biochemical Cytology 9:493-495
17. Hawke TJ, Garry DJ 2001 Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534-551
18. Charge SBP, Rudnicki MA 2004 Cellular and Molecular Regulation of Muscle Regeneration. Physiol Rev 84:209-238
19. McKinsey TA, Zhang CL, Olson EN 2001 Control of muscle development by dueling HATs and HDACs. Current Opinion in Genetics & Development 11:497-504
20. Michael A. Rudnicki RJ 1995 The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17:203-209
21. Edmondson DG, Olson EN 1993 Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem 268:755-758
22. Norton JD 2000 ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113:3897-3905
23. Charles P. Ordahl BAW 1998 Knowing chops from chuck: roasting MyoD redundancy. BioEssays 20:357-362
24. Ludolph DC, Konieczny SF 1995 Transcription factor families: muscling in on the myogenic program. FASEB J 9:1595-1604
25. Olson EN 1992 Interplay between proliferation and differentiation within the myogenic lineage. Developmental Biology 154:261-272
26. Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ 1999 p21CIP1 and p57KIP2 control muscle differentiation at the myogenin step. Genes Dev 13:213-224
27. Malcolm R. Alison RP, Stuart Forbes, Nicholas A. Wright 2002 An introduction to stem cells. The Journal of Pathology 197:419-423
28. Sassoon DA 1993 Myogenic Regulatory Factors: Dissecting Their Role and Regulation during Vertebrate Embryogenesis. Developmental Biology 156:11-23
29. Kaestner KH, Knochel W, Martinez DE 2000 Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142-146
30. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ, Emanuel BS, Rovera G, Barr FG 1993 Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230-235
31. Schmidt M, de Mattos S, van der Horst A, Medema R 2002 Cell Cycle Inhibition by FoxO Forkhead Transcription Factors Involves Downregulation of Cyclin D. Mol Cell Biol 22:7842–7852.
32. P Carlsson MM 2002 Forkhead Transcription Factors: Key Players in Development and Metabolism Developmental Biology 250:1-23(23)
33. Accili D, Arden KC 2004 FoxOs at the Crossroads of Cellular Metabolism, Differentiation, and Transformation. Cell 117:421-426
34. Tran H, Brunet A, Griffith EC, Greenberg ME 2003 The Many Forks in FOXO''s Road. Sci STKE 2003:re5-
35. Tsai W-C, Bhattacharyya N, Han L-Y, Hanover JA, Rechler MM 2003 Insulin Inhibition of Transcription Stimulated by the Forkhead Protein Foxo1 Is Not Solely due to Nuclear Exclusion. Endocrinology 144:5615-5622
36. Kajihara T, Jones M, Fusi L, Takano M, Feroze-Zaidi F, Pirianov G, Mehmet H, Ishihara O, Higham JM, Lam EWF, Brosens JJ 2006 Differential Expression of FOXO1 and FOXO3a Confers Resistance to Oxidative Cell Death upon Endometrial Decidualization. Mol Endocrinol 20:2444-2455
37. Rosas M, Dijkers PF, Lindemans CL, Lammers J-WJ, Koenderman L, Coffer PJ 2006 IL-5-mediated eosinophil survival requires inhibition of GSK-3 and correlates with {beta}-catenin relocalization. J Leukoc Biol 80:186-195
38. Katoh M KM 2004 Human FOX gene family. International journal of oncology 25:1495-1500
39. Paik J-H, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA 2007 FoxOs Are Lineage-Restricted Redundant Tumor Suppressors and Regulate Endothelial Cell Homeostasis. Cell 128:309-323
40. Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O 2004 Skeletal Muscle FOXO1 (FKHR) Transgenic Mice Have Less Skeletal Muscle Mass, Down-regulated Type I (Slow Twitch/Red Muscle) Fiber Genes, and Impaired Glycemic Control. J Biol Chem 279:41114-41123
41. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL 2004 Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell 117:399-412
42. Furuyama T, Kitayama K, Yamashita H, Mori N 2003 Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 375:365–371
43. Nakae J, Kitamura T, Silver DL, Accili D 2001 The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 108:1359-1367
44. Odelberg SJ, Kollhoff A, Keating MT 2000 Dedifferentiation of Mammalian Myotubes Induced by msx1. Cell 103:1099-1109
45. Nishiyama T, Kii I, Kudo A 2004 Inactivation of Rho/ROCK Signaling Is Crucial for the Nuclear Accumulation of FKHR and Myoblast Fusion. J Biol Chem 279:47311-47319
46. Zierath JR HJ 2004 Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:e348
47. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V 2003 Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State. Molecular Cell 12:51-62
48. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB 1995 Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018-1021
49. Andres V, Walsh K 1996 Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132:657-666
50. Guo K, Walsh K 1997 Inhibition of Myogenesis by Multiple Cyclin-Cdk Complexes. COORDINATE REGULATION OF MYOGENESIS AND CELL CYCLE ACTIVITY AT THE LEVEL OF E2F. J Biol Chem 272:791-797
51. Parker SB, Eichele, G., Zhang, P., Rawls, A.,Sands, A.T., Bradley, A., Olson, E.N., Harper, J.W.and Elledge, S.J 1995 "p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells". Science 267:1024~1027
52. Ravussin E, Smith SR 2002 Increased Fat Intake, Impaired Fat Oxidation, and Failure of Fat Cell Proliferation Result in Ectopic Fat Storage, Insulin Resistance, and Type 2 Diabetes Mellitus. Ann NY Acad Sci 967:363-378
53. Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D 2003 Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol 162:535-541
54. Nakae J, Kitamura T, Kitamura Y, Biggs WH, Arden KC, Accili D 2003 The Forkhead Transcription Factor Foxo1 Regulates Adipocyte Differentiation. Developmental Cell 4:119-129
55. Kopelman PG 2000 Obesity as a medical problem. Nature 404:635-643
56. Greer EL, Brunet A 2005 FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410-7425
57. Feng Libing YL, Zhou Weiguo, Huang Li, Wan Min, Zhao Shouyuan and Changben Li 2001 SGK and 14-3-3 protein are involved in the serine/threonine phosphosylation mechanism for TPO/MPL signal transduction. Chinese Science Bulletin 46:1880-1884