| 研究生: |
鄭喬尹 Chiao-yin Cheng |
|---|---|
| 論文名稱: |
以矽烷化衍生試劑搭配氣相層析質譜儀於線上衍生法快速分析環境水樣中三氯沙之濃度 Determination of Triclosan in Water Samples by On-line Derivatizaion coupled with Gas Chromatography-Mass Spectrometry |
| 指導教授: |
丁望賢
Wang-Hsien Ding |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 線上衍生化 、氣相層析質譜儀 |
| 外文關鍵詞: | derivatization, gas chromatography-mass spectrometry |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究主要是以氣相層析質譜儀的大體積進樣裝置搭配矽烷化衍生試劑進行注射埠之線上衍生化技術,有效檢測環境水樣中的三氯沙(TCS)與甲基三氯沙(MTCS)。在衍生化的過程中,針對注射埠中的反應溫度及時間進行最佳化探討,以MTBSTFA作為衍生試劑,衍生反應溫度及時間分別為120℃和2分鐘,可將TCS轉化成TCS-TBDMS衍生物,在進行GC檢測時,能與MTCS完全分離。線上衍生技術步驟簡單且能迅速地分析待測物,簡化傳統衍生反應的過程與衍生試劑用量,並利用固相萃取技術作為水樣的前處理方法。待測物在去離子水中之回收率為104%以上,相對標偏差值(RSD)則都在7%以下。對台灣不同環境樣品進行檢測,待測物的回收率大多可在70%以上,相對標準偏差在12%以下,而本方法之定量偵測極限(LOD)對三氯沙及甲基三氯沙分別為0.9 ng/L與1.0 ng/L。針對安平污水處理廠之進流水中,檢測出三氯沙的濃度範圍為35 ng/L至278 ng/L,放流水則為78 ng/L以下;豐原地區表面水水樣品與中央大學百花川水樣中觀察到微量的三氯沙存在,濃度範圍約1~70 ng/L之間。在所有環境水樣中均未檢測到甲基三氯沙。除此之外,本篇研究也針對市售的個人護理產品(如洗面乳、牙膏和洗手乳)以超音波震盪的萃取方式進行檢測,三氯沙的濃度範圍為0.07% ~ 0.28%,均在政府的規範內。
A rapid injector-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed and validated for the determination of triclosan (TCS) and methyl triclosan (MTCS) in various environmental water samples. The parameters related to the derivatization process (i.e., injection-port temperature and reaction time) were optimized. TCS was converted into the tert-butydimethylsilyl (TBDMS) derivative by MTBSTFA as silyation reagent holding 2 min in injection-port at temperature 120℃. Derivative TCS-TBDMS can be separated from MTCS in GC analysis. This technique simplified the derivatization procedure and increase sensitivity.
Solid-phase extraction (SPE) method was used to cleanup and concentrate analytes from wastewater samples. The limits of detection of TCS and MTCS were 0.9 and 1.0 ng/L, respectively. The recoveries from the spiked water samples ranged from 48 – 119% with relative standard deviation (RSD) less than 16% at the 250 ng/L level. Only TCS was detected in wastewater and surface water samples, and concentrations ranged from 35 - 287 ng/L in influents, ND - 78 ng/L in effluents, 1 - 70 ng/L in surface water samples. No MTCS was detected in all samples.
In this study, we also detected the personal care products (i.e., toothpaste, facial Cleansing cream and handwashs) using ultrasonic extraction to confirm the content of triclosan. The recoveries of triclosan from the spiked PCP samples ranged from 94 – 100% with relative standard deviation (RSD) less than 12%, and the contents of triclosan ranged from 0.07% - 0.28%.
丁望賢、陳仲村:氣相層析注射埠中離子對直接衍生法之原理及應用,科儀新知,第21卷1期,第76-82頁,民國88年。
劉春英、劭清益、孫慈悌:市售洗髮精是否掺有Hecachlorophene、Triclosan、Triclocarban成分之調查,藥物食品檢驗局調查研究年報,1989,7:180-181。
何國榮、張耀仁:離子阱質譜儀,科儀新知,第14卷5期,第48-55頁,民國82 年。
黃忠智:氣相層析/離子阱串聯質譜儀,科儀新知,第17 卷2 期,第42-49 頁,民國88 年。
陳鑫昌、丁望賢:質譜技術之原理與應用, 化工技術, 2003, 119, 144-164.
曾新華、丁望賢:離子阱質譜儀,儀器總覽-化學分析儀器,民國87年
汪禧年:質譜儀及其在環境分析上的應用,科儀新知,第15卷5期,第33-48頁,民國83年。
Adolfsson-Erici, M.; Pettersson, M.; Parkkonen, J.; Sturve, J., Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden, Chemosphere, 2002, 46, 1485–1489.
Agüera, A.; Fernández-Alba, A. R. ; Piedra, L. ; Mézcua, M.; José Gómez, M., Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry, Analytica Chimica Acta, 2003, 480, 193–205.
Balmer, M. E.; Poiger, T.; Droz, C.; Romanin, K.; Bergqvist, P.; Muller, M. D.; Buser, H.; Occurrence of methyl-triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ Sci Technol, 2004, 38, 390–395.
Battaglin, W.; Drewes, J.; Bruce, B.; McHugh, M., Introduction: contaminants of emerging concern in the environment, Water Resour. IMPACT, 2007, 9, 3-4.
Bester, K., Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch Environ Contam Toxicol, 2005, 49, 9–17.
Bhargava, H. N.; Leonard, P. A., Triclosan: Applications and safety, AJIC Am J Infect Control, 1996, 24, 209-218.
Blau, K.; Halket, J. M., Handbook of derivatives for chromatography, 1993, John Wiley & Sons Ltd, Chichester.
Boyd, G.; Reemtsma, H.; Grimm, D.; Mitra, S., Pharmaceuticals and personal care products (PPCPs) in surface water and treated waters of Louisiana, USA, and Ontario, Canada. Sci Total Environ, 2003, 311, 135–149.
Calafat, A. M.; Ye, X.; Wong, L.Y.; Reidy, J. A.; Needham, L. L., Urinary Concentrations of Triclosan in the U.S. Population: 2003–2004, Environ Health Perspect, 2008, 116, 303–307.
Calafat, A. M.; Weuve, J.; Ye, X.; Jia, L. T.; Hu, H.; Ringer, S.; Hutter, K.; Hauser, R., Exposure to bisphenol A and other phenols in Neonatal Intensive Care Unit premature infants, Environ Health Perspect, 2009, 117, 639-644.
Canosa, P.; Rodriguez, I.; Rubí, E.; Cela, R., Optimization of solid-phase microextraction conditions for the detection of triclosan and possible related compounds in water sample. J Chromatogr A, 2005, 1072, 107-115.
Daughton, C. G.; Ternes, T. A., Pharmaceuticals and personal care product in the environment: agents of subtle change, Environmental Health Perspectives, 1999, 107, 907- 938.
Ding, W.H.; Tzing, S.H., Analysis of Nonylphenol Polyethoxylates and Their Degradation Products in River Water and Sewage Effluent by Gas Chromatography- Ion Trap (Tandem) Mass Spectrometry with Electron Impact and Chemical Ionization, J. Chromatogr. A, 1998, 824, 79-90.
Foran, C.M.; Bennett, E. R.; Benson, W. H., Developmental evaluation of a potential non-steroidal estrogen: triclosan. Mar. Environ. Res., 2000, 50, 153–156.
Glassmeyer, S.T.; Furlong, E. T.; Kopin, D. W.; Cahill, J. D.; Meyer, M. T.; Kryak, D. D., Transport of chemical and microbial compounds from known wastewater dischonges: potential for use as indicators of human fecal contamination, Environ. Sci. Technol., 2005, 39, 5157-5169.
Guo, J. H.; Li, X. H.; Cao, X. L.; Li, Y.; Wang, X. Z.; Xu, X. B., Determination of triclosan, triclocarban and methyl-triclosan in aqueous samples by dispersive liquid-liquid microextraction with rapid liquid chromatography. J. Chromatogr. A., 2009, 1216, 3038-3043.
Harris, D. C., Quantitative chemical analysis, six edition, 2002, W. H. Freeman and Company.
Hiroshi, I.; Naomi, M.; Masashi, H.; Munekazu, M.; Hideki, S.; Yasuihire, I.; Yuji, T.; Koji, A., Effects of triclosan on the early life stages and repeoduction of medaka Oryzias latipes and induction of hepatic vitwllogenin, Aquatic Toxicology, 2004, 67, 167-179.
Holtz, S., There is no “Away.” Pharmaceuticals, personal care products, and endocrine-disrupting substances: Emerging contaminants detected in water, Canadian institude for environmental law and policy, 2006.
Jones, R. D.; Jampani, H. B.; Newman, J.L.; Lee, A. S., Triclosan: A review of effectiveness and safety in health care settings. AJIC Am J Infect Control, 2000, 28, 184-96.
Kanetoshi, A.; Katsura, E.; Ogawa, H.; Ohyama, T.; Kaneshima, H.; Miura, T., Acute toxicity, percutaneous absorption and effects on hepatic mixed function oxidase activities of 2,4,4’trichloro-2’-hydroxydiphenyl ether (Irgasan DP 300) and its chlorinated derivatives. Arch Environ Contam Toxic, 1992, 23, 91-98.
Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton, H.T., Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ Sci Technol, 2002, 36, 1202–1211.
Kolpin, D. W.; Skopec, M.; Meyer, M.T.; Furlong, E. T.; Zaugg, S.D., Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions, Sci Total Environ, 2004, 328, 119–130.
Latch, D.; Packer, J.; Stender, B., Vanoverbeke, J.; Arnold, W.; McNeill, K., Aqueous Photochemistry of Triclosan: Formation of 2,4-Dichlorophenol, 2,8-Dichlorordibenzo-p-Dioxin, and Oligomerization Products, Environ. Toxicol. Chem., 2005, 24, 517-525.
Lee, H. B.; Sarafin, K.; Peart, T. E.; Svoboda, M. L., Acidic pharmacuticals in sewage-methodolgy, stability test, occurrence, and removal from ontario samples, Water Qual. Res. J. Canada, 2003, 38, 667-682.
Lee, H. B.; Peart, T. E.; Svoboda, M. L., Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry, J Chromatogr A, 2005, 1094, 122–129.
Levy, C. W.; Roujeinikova, A.; Sedelnikova, S.; Baker, P. J.; Stuitje, A. R.; Slabas, A. R.; Rice, D. W.; Rafferty, J. B., Molecular basis of triclosan activity, Nature, 1999, 398, 383-384.
Lindström, A.; Buerge, I. J.; Poiger, T.; Bergqvist, P. A.; Müller, M. D.; Buser, H. R. Occurrence and environmental behaviour of the bactericide triclosan and its methyl derivative in surface waters and in waste water. Environ. Sci. Technol., 2002, 36, 2322-2329.
Lores, M.; Llompart, M.; Sanchez-Prado, L.; Garcia-Jares, C.; Cela, R.; Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME, Anal Bioanal Chem, 2005, 381, 1294–1298.
Mats, A.; Fiona, H.; Leisa-Maree, L.; Toms, J. F.; Mueller, M. S.; McLachlan, M. A.; Gunilla, S. E., The influence of age and gender on triclosan concentrations in Australian human blood serum, Science of The Total Environment, 2008, 393, 162-167.
McAvoy, D. C.; Schatowitz, B.; Jacob, M.; Hauk, A.; Eckhoff, W. S., Measurement of triclosan in wasterwater treatment system. Environ Toxicol Chem, 2002, 21, 1323–1329.
Mezcua, M.; Gomez, M. J.; Ferrer, I.; Aguera, A.; Hernando, M. D.; Fernandez-Alba, A.R., Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples, Analytica Chimica Acta 2004, 524, 241–247.
Peck, A.M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices, Anal. Bioanal. Chem., 2006, 386, 907-939.
Petrović, M.; Gonzale, S.; Barceló, D., Analysis and removal of emerging contanminants in wastewater and drinking water, Trends Anal. Chem., 2003, 22, 685-696.
Reiss, R.; Mackay, N.; Habig, C.; Griffin, J., An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Envrion Toxicol Chem, 2002 22, 2483–2492.
Sanchez-Prado, L.; Barro, R.; Garcia-Jares, C.; Lompart, M.; Lores, M.; Petrakis, C.; Kalogerakis, N.; Mantzavinos, D.; Psillakis. E., Sonochemical degration of triclosan in water and wasterwater, Ultrasonics Sonochemistry, 2008, 15, 689-694.
Schweizer, H. P., Triclosan: A widely used biocide and its link to antibiotics. FEMS Microbiol Lett, 2001, 202, 1–7.
Shelver, W. L.; Kamp, L.M.; Church, J.L.; Rubio, F.M., Measurement of triclosan in water using a magnetic particle enzyme immunoassay, J. Agric. Food Chem., 2007, 55, 3758-3763.
Singer, H.; Müller, S.; Tixier C.; Pillonel, L., Triclosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments, Environ. Sci. Technol. 2002, 36, 4998-5004.
Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis, 1998, Thomson Learning, Mexico.
Thomas, P. M.; Foster, G. D., Tracking acidic pharmaceuticals, caffine, and triclosan through the wasterwater treatment process. Environ Toxicol Chem, 2005, 24, 25–30.
Zhao, R. S.; Yuan, J. P.; Li, H. F.; Wnag, X.; Jiang, T.; Lin, J. M., Nonequilibrium hollow- fiber liquid-phase microextraction with in situ derivatization for the measurement of triclosan in aqueous samples by gas chromatography-mass spectrometry. Anal. Bioanal. Chem., 2007, 387, 2911-2915.