跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭凱文
Kai-Wen ZHENG
論文名稱: 融合卡爾曼濾波演算法之IMU感測器於GPS失效期間之軌跡估計
Trajectory Estimation During GPS Outages Using IMU Sensor Fusion with Kalman Filtering
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系在職專班
Executive Master of Communication Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 58
中文關鍵詞: 卡爾曼濾波IMU感測器GPS
外文關鍵詞: Kalman Filtering, IMU Sensor, GPS
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討了一種基於卡爾曼濾波與感測器融合的方法,以估計全球定位系統(GPS)失效時的移動軌跡重建,解決導航應用中因信號遮擋或干擾導致的定位中斷問題。GPS在戶外環境中提供高精度定位,但在城市峽谷、隧道或室內場景下易失效,而慣性測量單元(IMU)雖可獨立運作,卻受噪聲和漂移影響。本研究從多組實測數據中收集GPS和IMU數據(包括經緯度、速度、加速度、陀螺儀和羅盤數據),通過卡爾曼濾波技術對加速度進行修正,以實現連續且準確的軌跡重建。方法上,首先利用卡爾曼濾波平滑加速度數據以降低噪聲影響;接著通過互補濾波融合羅盤與陀螺儀數據,生成穩定航向角;在GPS失效後,基於初始速度和運動學積分估計 IMU 軌跡,並採用極座標標準化技術將GPS和 IMU軌跡與基準對齊。研究結果顯示,融合方法生成的軌跡與基準軌跡的均方根誤差(RMSE)接近基準值,優於單獨使用GPS或IMU的結果,驗證了其在短時失效場景下的有效性。相較於現有方法,本研究通過實測數據還原軌跡,計算效率高且無需大量訓練數據,具備較強的應用適應性。本方法為運動導航、無人機飛行等GPS失效場景提供了可靠解決方案,未來可進一步融入多感測器數據,提升長期失效下的軌跡精度。


    This paper investigates a method based on Kalman filtering and sensor fusion to reconstruct movement trajectories during Global Positioning System (GPS) outages, addressing positioning interruptions in navigation applications caused by signal obstruction or interference. GPS provides high-precision positioning in outdoor environments but is prone to failure in urban canyons, tunnels, or indoor settings. In contrast, Inertial Measurement Units (IMU) can operate independently but are affected by noise and drift. This study collects GPS and IMU data (including latitude, longitude, velocity, acceleration, gyroscope, and compass data) from multiple real-world experiments and employs Kalman filtering to refine acceleration data for continuous and accurate trajectory reconstruction. The methodology first applies Kalman filtering to smooth acceleration data, reducing noise impact. Then, complementary filtering is used to fuse compass and gyroscope data, generating a stable heading angle. During GPS outages, IMU trajectories are estimated based on initial velocity and kinematic integration, with polar coordinate standardization aligning GPS and IMU trajectories to a reference. Results show that the fused method achieves a root mean square error (RMSE) comparable to the reference trajectory, outperforming standalone GPS or IMU, validating its effectiveness in short-term outage scenarios. Compared to existing methods, this approach reconstructs trajectories from real-world data with high computational efficiency and no need for extensive training data, demonstrating strong adaptability. The method provides a reliable solution for motion navigation, drone flight, and other GPS outage scenarios, with potential future enhancements through multi-sensor data integration to improve trajectory accuracy in long-term outages.

    摘 要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VI 符號彙編 VII 第一章 緒論 1 1.1研究動機及方法 1 1.2章節架構 4 第二章 系統場景 5 2.1全球定位系統(GPS) 5 2.2慣性測量單元(IMU) 5 2.3卡爾曼濾波器 6 2.4互補濾波器 7 2.5運動學公式 7 2.6極座標標準化 8 2.7均方根誤差(RMSE) 10 第三章 本文所用之硬體及演算法 11 3.1系統流程圖 11 3.2硬體架構 13 3.3數據處理 14 3.4演算法設計 16 3.5誤差評估 22 3.6軌跡切換及融合 23 第四章 實驗結果分析及比較 25 4.1 GPS與IMU軌跡比較 25 4.2 GPS失效後的IMU軌跡推算 31 4.3實際場景應用 37 4.4無人機場景應用 39 第五章 結論與未來研究發展 43 文獻參考 44

    [1] M. Bryson and S. Sukkarieh, "High altitude UAV navigation using IMU, GPS and camera," in Proc. IEEE Int. Conf. Robotics Autom., 2007
    [2] H. Liu, S. Nassar, and N. El-Sheimy, "Two-filter smoothing for accurate INS/GPS land-vehicle navigation in urban centers," IEEE Trans. Veh. Technol., vol. 59, no. 9, pp. 4256–4267, Nov. 2010.
    [3] W. Yan, C. Hou, Y. He, X. Zhao, and W. Guo, "A shipboard integrated navigation algorithm based on smartphone built-in GNSS/IMU/MAG sensors," IEEE Access, vol. 10, pp. 92323–92334, 2022.
    [4] J. Shen, Y. Liu, S. Wang, and Z. Sun, “Evaluation of unscented Kalman filter and extended Kalman filter for radar tracking data filtering,” in Proc. Eur. Model. Symp, pp.190–194, October, 2014.
    [5] B. Allotta, L. Chisci, R. Costanzi, F. Fanelli, C. Fantacci, E. Meli, A. Ridolfi, A. Caiti, F. D. Corato, and D. Fenucci, “A comparison between EKF-based and UKF-based navigation algorithms for AUVs localization,” in Proc. IEEE OCEANS Conf, Genoa, Italy, pp. 1–5, May 2015.
    [6] P. D. Groves, "Principles of GNSS, inertial, and multisensor integrated navigation systems," Artech House, 2nd ed., 2013.
    [7] J. Farrell and M. Barth, "The global positioning system and inertial navigation," McGraw-Hill, 1999.
    [8] L. Wei, C. Cappelle, Y. Ruichek, and F. Zann, “Intelligent vehicle localization in urban environments using EKF based visual odometry and GPS fusion,” Proc. IFAC World Congress, Beijing, China, Aug. 2011, pp. 13776–13781.
    [9] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning for GPS/IMU integration in autonomous driving," Nature, vol. 521, pp. 436–444, May 2015.
    [10] T. Moore and D. Stouch, "Error-state Kalman filter with smoothing for long-term INS/GPS navigation," in Proc. IEEE/ION PLANS, 2014, pp. 1234–1241.
    [11] X. Chen, Y. Wang, and N. El-Sheimy, "Calibration of low-cost MEMS IMU for integrated navigation systems," in Proc. ION GNSS, 2013, pp. 1567–1574.
    [12] U. N. Patel and I. A. Faruque, "Multi-IMU based alternate navigation frameworks: Performance & comparison for UAS," IEEE Access, vol. 10, pp. 17565–17577, 2022.
    [13] S. G. Leitch, Q. Z. Ahmed, W. B. Abbas, M. Hafeez, P. I. Laziridis, P. Sureephong, and T. Alade, “On indoor localization using WiFi, BLE, UWB, and IMU technologies,” Sensors, vol. 23, no. 20, p. 8598, 2023, doi: 10.3390/s23208598.
    [14] S. Godha and M. E. Cannon, "DSP-based GPS/INS integration for real-time applications," in Proc. ION GNSS, 2007, pp. 1890–1898.
    [15] J. Zhang, "Digital signal processing-based IMU data simulator for navigation applications," M.S. thesis, Dept. Electron. Eng., National Chiao Tung Univ., Hsinchu, Taiwan, 2020.
    [16] Z. Xu, B. Xi, G. Yi, and C. K. Ahn, “High-precision control scheme for hemispherical resonator gyroscopes with application to aerospace navigation systems,” Aerospace Science and Technology, vol. 119, p. 107168, 2021.
    [17] S. -M. Oh, "Multisensor fusion for autonomous UAV navigation based on the Unscented Kalman Filter with Sequential Measurement Updates," 2010 IEEE Conference on Multisensor Fusion and Integration, Salt Lake City, UT, USA, 2010, pp. 217-222, doi: 10.1109/MFI.2010.5604461.
    [18] Y. Li, R. Chen, and N. El-Sheimy, "Inertial sensing meets machine learning: Opportunity or challenge?" IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7, pp. 1–17, Jul. 2021.
    [19] S. Y. Alaba, “GPS-IMU Sensor Fusion for Reliable Autonomous Vehicle Position Estimation,” arXiv preprint arXiv:2405.08119, May 2024.
    [20] Phil Kim, Kalman Filter for Beginners with MATLAB Examples, A-JIN Publishing, 2010.
    [21] Yin, Y., Xu, C., & Zhang, L. (2023). Integration of GNSS and IMU Data Using an Error-State Kalman Filter Combined with a Rauch–Tung–Striebel Smoother. Sensors, 23(7), 3676.
    [22] 秦永元, 張洪鉞, & 汪叔華. (2012). 卡爾曼濾波與組合導航原理. 西北工業大學出版社.
    [23] Taner, M., & Chingiz, H. (2016). 基於卡爾曼濾波的大氣數據/GPS組合導航系統 (戴洪德, Trans.). 國防工業.
    [24] 付夢印, 鄧志紅, & 張繼偉. (2003). Kalman 濾波理論及其在導航系統中的應用 (Vol. 10). 北京: 科學出版社.
    [25] 黃小平, 王岩 卡爾曼濾波原理及應用:MATLAB仿真,北京:電子工業出版社,2015.

    QR CODE
    :::