跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱翊宣
Yi-Hsuan Chiu
論文名稱: 用於整合感測與通訊系統中具能源效益之STAR-RIS的聯合波束成形、量化與元件選擇設計
Joint Beamforming, Quantization and Element Selection for Energy-Efficient STAR-RIS in Integrated Sensing and Communication Systems
指導教授: 沈立翔
Li-Hsiang Shen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 68
中文關鍵詞: 可重構智慧表面整合感知與通訊能源效益量化元素開關狀態
外文關鍵詞: STAR-RIS, ISAC, Energy Efficiency, Quantization, Element On-Off state
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種具備全空間傳輸能力的 STAR-RIS 輔助整合感知與通訊(ISAC)的架構。透過同時傳輸與反射的可重構智慧表面(STAR-RIS),系統能在多用戶環境中同時支援下行通訊與目標感知。我們提出了一個以最大化能源效益(EE)為目標的最佳化問題,同時考慮了基地台的傳輸波束成形、STAR-RIS 的相位與振幅係數調整、STAR-RIS 元件的二元開關狀態,以及相位與振幅的量化階層數。提出一種結合基地台傳輸與感測波束成形設計,STAR-RIS係數矩陣、控制元件以及量化階層最佳化的聯合設計方法,並在滿足通訊服務品質、感測訊雜比與最大傳輸功率的限制下,求得最佳解。文章內的解法會透過交替式最佳化各變數(AO)的框架結合連續凸近似(SCA)、Dinkelbach演算法來轉化並解決此非凸且具混合整數特性的最佳化問題。
    模擬解果分析會考量到各最佳化的變數、基地台傳輸能量預算、STAR-RIS與感測目標物位置的水平距離所帶來的不同影響,以及不同的量化階層策略、STAR-RIS元素開關控制方案所顯示的交互關係。所提出的演算法能顯著提升 STAR-RIS輔助ISAC 系統的能源效益,同時兼顧系統的通訊速率與高準確度的感測表現,優於傳統獨立架構下的多種網路架構與參數配置條件。此外我們會跟現有的基準方案做比較,也可證實所提出的演算法展現出更好的整體系統效能與優勢。


    In this paper, we investigates a STAR-RIS-aided Integrated Sensing and Communication (ISAC) framework for full-space energy-efficient transmission. By employing a Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface (STAR-RIS), the system is capable of jointly supporting downlink communication and target sensing in a multi-user environment. We formulate an energy efficiency (EE) maximization problem that jointly optimizes the transmit communication and sensing beamforming at the base station, the STAR-RIS phase shifts and amplitude coefficients matrix, the binary on/off states of STAR-RIS elements, the quantization levels for both amplitude and phase shifts, also discuss three different configurations of STAR-RIS. We have proposed a joint active BS beamforming and quantized STAR-RIS configuration scheme to handle the resulting non-convex and mixed-integer optimization problem through an alternating optimization (AO) that integrates successive convex approximation (SCA), Dinkelbach algorithm, and a relaxation-and-rounding strategy. Simulation results demonstrate that the proposed STAR-ISAC with scheme significantly enhances the system EE performance while ensuring the system rate requirement in communications and high sensing performance compared to the conventional standalone architecture with different network and configuration effects. Also, the proposed scheme outperforms the other existing benchmarks in open literature.

    摘要 i Abstract ii 誌謝 iii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 System Model and Problem Formulation 7 2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 STAR-RIS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Transmit Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Proposed Solution 14 3.1 Problem Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Solution of Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Transmit Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 STAR-RIS with Continuous Configuration . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Relaxed STAR-RIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2 Independent STAR-RIS . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.3 Coupled T&R STAR-RIS . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 STAR-RIS Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 Solution of On-Off Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 30 4 Simulations Results and Discussion 31 4.1 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Impact of Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4 Sensing performance analyze . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.5 Impact of Beamforming Optimization Schemes . . . . . . . . . . . . . . . . . 39 4.6 ISAC Tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.7 Partitioning STAR-RIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.8 Energy Efficiency and Power Consumption Analysis . . . . . . . . . . . . . . 43 4.9 Feasibility analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.10 Benchmark Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 v 5 Conclusion 48 Appendix 49 References 52

    [1] F. Liu, Y. Cui, C. Masouros, J. Xu et al., “Integrated sensing and communications: Toward
    dual-functional wireless networks for 6G and beyond,” IEEE Journal on Selected Areas
    in Communications, vol. 40, no. 17, pp. 1728 – 1767, 2022.
    [2] Z. Du, F. Liu, Y. Li et al., “Toward ISAC-empowered vehicular networks: Framework,
    advances, and opportunities,” IEEE Wireless Communications, vol. 32, no. 28, pp. 222 –
    229, 2025.
    [3] A. Liu, Z. Huang, M. Li et al., “A survey on fundamental limits of integrated sensing and
    communication,” IEEE Communications Surveys Tutorials, vol. 24, no. 2, pp. 994–1034,
    2022.
    [4] Y. Cui, F. Liu, X. Jing et al., “Integrating sensing and communications for ubiquitous IoT:
    Applications, trends, and challenges,” IEEE Network, vol. 35, no. 5, p. 158–167, 2021.
    [5] Z. Zhu, Z. Li, Z. Chu et al., “Resource allocation for intelligent reflecting surface assisted
    wireless powered iot systems with power splitting,” IEEE Transactions on Wireless Com-
    munications, vol. 21, pp. 2987 – 2998, 2021.
    [6] C. Huang, Z. Yang, G. C. Alexandropoulos et al., “Multi-Hop RIS-empowered Terahertz
    communications: A DRL-based hybrid beamforming design,” IEEE Journal on Selected
    Areas in Communications, vol. 39, pp. 1663 – 1677, 2021.
    [7] W. Yan, W. Hao, C. Huang et al., “Beamforming analysis and design for wideband THz
    reconfigurable intelligent surface communications,” IEEE Journal on Selected Areas in
    Communications, vol. 41, pp. 2306 – 2320, 2023.
    52
    [8] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint
    active and passive beamform,” IEEE Transactions on Wireless Communications, vol. 18,
    pp. 5394–5409, 2019.
    [9] Y. Cui, F. Liu, X. Jing, and J. Mu, “An overview of signal processing techniques for
    RIS/IRS-aided wireless systems,” IEEE Journal of Selected Topics in Signal Processing,
    vol. 16, pp. 883 – 917, 2022.
    [10] N. Shlezinger, G. C. Alexandropoulos, M. F. Imani et al., “Dynamic metasurface anten-
    nas for 6G extreme massive MIMO communication,” IEEE Wireless Communications,
    vol. 28, pp. 106–113, 2021.
    [11] R. Liu, M. Li, H. Luo, Q. Liu et al., “Integrated sensing and communication with reconfig-
    urable intelligent surfaces: Opportunities, applications, and future directi,” IEEE Wireless
    Communications, vol. 30, pp. 50–57, 2023.
    [12] A. Fascista, M. F. Keskin, A. Coluccia et al., “RIS-aided joint localization and synchro-
    nization with a single-antenna receiver: Beamforming design and low-complexity esti-
    mated,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, pp. 1141 – 1156,
    2023.
    [13] Z.-M. Jiang, M. Rihan, P. Zhang et al., “Intelligent reflecting surface aided dual-function
    radar and communication system,” IEEE Systems Journal, vol. 16, pp. 475–486, 2022.
    [14] R. Liu, M. Li, Y. Liu et al., “Joint transmit waveform and passive beamforming design for
    ris-aided DFRC systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 16,
    pp. 995 – 1010, 2022.
    [15] X. Song, D. Zhao, H. Hua et al., “Joint transmit and reflective beamforming for IRS-
    assisted integrated sensing and communication,” in Proc. IEEE Wireless Communications
    and Networking Conference (WCNC), 2022, pp. 1–6.
    [16] H. Luo, R. Liu, M. Li et al., “RIS-aided integrated sensing and communication: Joint
    beamforming and reflection design,” IEEE Transactions on Vehicular Technology, vol. 72,
    pp. 9626 – 9630, 2023.
    53
    [17] K. Zhong, J. Hu, C. Pan et al., “Joint waveform and beamforming design for RIS-aided
    ISAC systems,” IEEE Signal Processing Letters, vol. 30, pp. 165 – 169, 2023.
    [18] Y. Mai and H. Du, “Joint beamforming and phase shift design for RIS aided ISAC system,”
    in Proc. IEEE International Conference on Computer and Communications (ICCC), 2022,
    pp. 155–160.
    [19] L. Jiang and H. Jafarkhani, “Joint beamforming and reflection design for RIS-assisted
    ISAC systems,” in Proc. IEEE European Signal Processing Conference (EUSIPCO),
    2022, pp. 997–1001.
    [20] T. Guo, M. Mei, Z. Yang et al., “Integrated sensing and communication for RIS assisted
    backscatter system,” IEEE Internet of Things Journal, vol. 10, pp. 13 716 – 13 726, 2023.
    [21] M. Hua, Q. Wu, S. Ma et al., “Joint active and passive beamforming design for IRS-
    aided radar-communication,” IEEE Transactions on Wireless Communications, vol. 22,
    pp. 2278 – 2294, 2023.
    [22] T. Guo, M. Mei, Z. Yang et al., “Joint communication and sensing design in coal mine
    safety monitoring: 3-D phase beamforming for RIS-assisted wireless networks,” IEEE
    Internet of Things Journal, vol. 10, pp. 11 306 – 11 315, 2023.
    [23] H. Niu, Z. Chu, F. Zhou et al., “Weighted sum rate optimization for STAR-RIS-assisted
    MIMO system,” IEEE Transactions on Vehicular Technology, vol. 71, pp. 2122 – 2127,
    2021.
    [24] T. Hou, J. Wang, Y. Liu et al., “A joint design for STAR-RIS enhanced NOMA-CoMP net-
    works: A Simultaneous-Signal-Enhancement-and-Cancellation-Based (SSECB) design,”
    IEEE Transactions on Vehicular Technology, vol. 71, pp. 1043 – 1048, 2021.
    [25] J. He, A. Fakhreddine, and G. C. Alexandropoulos, “Simultaneous indoor and outdoor 3D
    localization with STAR-RIS-assisted millimeter wave systems,” in Proc. IEEE Vehicular
    Technology Conference (VTC2022-Fall), 2022, pp. 1043 – 1048.
    54
    [26] Z. Wang, X. Mu, and Y. Liu, “STARS enabled integrated sensing and communications,”
    IEEE Transactions on Wireless Communications, vol. 22, pp. 6750 – 6765, 2023.
    [27] Z. Zhang, Y. Liu, Z. Wang et al., “STARS-ISAC: How many sensors do we need?” IEEE
    Transactions on Wireless Communications, vol. 23, pp. 1085 – 1099, 2023.
    [28] J. Zhang, S. Gong, W. Lu et al., “Joint design for STAR-RIS aided ISAC: Decoupling or
    learning,” IEEE Transactions on Wireless Communications, vol. 3, pp. 14 365 – 14 379,
    2023.
    [29] N. Xue, X. Mu, Y. Liu et al., “NOMA-assisted full space STAR-RIS-ISAC,” IEEE Trans-
    actions on Wireless Communications, vol. 23, no. 8, pp. 8954–8968, 2024.
    [30] G. Sun, Y. Zhang, W. Hao et al., “Joint beamforming optimization for STAR-RIS aided
    NOMA ISAC systems,” IEEE Wireless Communications Letters, vol. 13, pp. 1009 – 1013,
    2024.
    [31] S. Zhang, W. Hao, G. Sun et al., “Joint beamforming optimization for active STAR-RIS-
    assisted ISAC systems,” IEEE Transaction Wireless Communications, vol. 23, no. 11, pp.
    15 888–15 902, 2024.
    [32] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via
    joint active and passive beamforming,” IEEE Transactions on Wireless Communications,
    vol. 18, no. 11, pp. 5394–5409, 2019.
    [33] W. Dinkelbach, On nonlinear fractional programming, 1967, vol. 13, no. 7.
    [34] F. Fang, B. Wu, S. Fu et al., “Energy-efficient design of STAR-RIS aided MIMO-NOMA
    networks,” IEEE Transactions on Communications, vol. 71, pp. 498 – 511, 2023.
    [35] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink
    spatial multiplexing in multiuser MIMO channels,” IEEE Transactions on Signal Process-
    ing, vol. 52, no. 2, pp. 461–471, 2004.
    [36] Z. Wang, X. Mu, Y. Liu et al., “Coupled phase-shift STAR-RISs: A general optimization
    framework,” IEEE Wireless Communications Letters, vol. 12, pp. 207–211, 2023.
    55
    [37] Z. Zhang, Z. Wang, Y. Liu et al., “Security enhancement for coupled phase-shift STAR-
    RIS networks,” IEEE Transactions on Vehicular Technology, vol. 72, pp. 8210 – 8215,
    2023.
    [38] R. Zhong, Y. Liu, X. Mu et al., “Hybrid reinforcement learning for STAR-RISs: A coupled
    phase-shift model based beamformer,” IEEE Journal on Selected Areas in Communica-
    tions, vol. 40, pp. 2556 – 2569, 2022.
    [39] Z. Wang, X. Mu, J. Xu et al., “Simultaneously transmitting and reflecting surface (STARS)
    for terahertz communications,” IEEE Journal of Selected Topics in Signal Processing,
    vol. 68, pp. 861 – 877, 2023.
    [40] J. Xu, X. Mu, J. T. Zhou et al., “Simultaneously transmitting and reflecting (STAR)-RISs:
    Are they applicable to dual-sided incidence?” IEEE Wireless Communications Letters,
    vol. 12, no. 2, pp. 129 – 133, 2023.
    [41] K. Shen and W. Yu, “Fractional programming for communication systems—part II: Uplink
    scheduling via matching,” IEEE Transactions on Signal Processing, vol. 66, pp. 2631–
    2644, 2018.
    [42] J. Liu, H. Li, and B. Himed, “Joint optimization of transmit and receive beamforming in
    active arrays,” IEEE Signal Processing Letters, vol. 21, pp. 39 – 42, 2014.
    [43] J. Yao, J. Xu, W. Xu et al., “Robust beamforming design for RIS-aided cell-free systems
    with CSI uncertainties and capacity-limited backhaul,” IEEE Transactions on Communi-
    cations, vol. 17, pp. 4636 – 4649, 2023.
    [44] Q. Shi and M. Hong, “Penalty dual decomposition method for nonsmooth nonconvex op-
    timization—part I: Algorithms and convergence analysis,” IEEE Transactions on Signal
    Processing, vol. 68, pp. 4108 – 4122, 2020.
    [45] M. S. Bajwa, A. P. Agarwal, and SumatiManchanda, “Ternary search algorithm: Improve-
    ment of binary search,” in Proc. International Conference on Computing for Sustainable
    Global Development (INDIACom), 2015, pp. 11–13.
    56
    [46] L.-H. Shen, C.-Y. Su, and K.-T. Feng, “CoMP enhanced subcarrier and power allocation
    for multi-numerology based 5G-NR networks,” IEEE Transactions on Vehicular Technol-
    ogy, vol. 71, no. 5, pp. 5460–5476, 2022.

    QR CODE
    :::