跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳政穎
Jheng-Ying Wu
論文名稱: 超對稱無R宇稱下的電子電偶極矩
Electron Electric Dipole Moment in Supersymmetry withoutR-parity
指導教授: 江祖永
Otto C. W. Kong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 97
語文別: 英文
論文頁數: 52
中文關鍵詞: 超對稱電偶極矩電子R宇稱
外文關鍵詞: Supersymmetry, EDM, electron, R-parity
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在超對稱沒有R 宇稱的情況下, 對於一迴圈貢獻於電
    子的電偶極矩, 我們給予詳細的分析和數值上的計算.
    在許多種類的一迴圈貢獻中, 我們對於由二線性和三
    線性參數組合成的費曼圖感興趣. 二線性參數透過費
    米子和純量子的質量混合來顯現, 然而三線性參數是
    透過質量本徵態的有效頂點. 我們有系統的研究和分
    析這些R 宇稱破壞的參數對於一迴圈費曼圖貢獻於電
    偶極矩的影響.


    We present a detailed analysis together with numerical calculations on one-loop contributions to the electron electric dipole moment from supersymmetry without R parity.
    We are interested at class of one-loop contributions are obtained from diagrams involving bilinear-trilinear parameter combinations. The bilinear parameters come into
    play through mass mixings induced among the fermions and scalars (slepton and Higgs states), while the trilinear parameter enters through a mass eigenstate e ective coupling vertex. We have made a systematic study of the in
    uence of R-parity violating parameters on the one-loop EDM diagrams.

    1 Introduction 1 2 Generic Supersymmetric Standard Model 5 2.1 On the scalar potential 8 2.2 Charged fermions 10 2.3 Neutral fermions 14 2.4 The neutral scalars 17 2.5 The charged scalars 22 3 Electron Electric Dipole Moment 26 3.1 "EDM overviews" 26 3.2 Charged scalar-neutral lepton vertices 28 3.3 Neutral scalar-charged lepton vertices 29 3.4 One-loop Level EDM 31 4 Numerical Results and Discussions 33 4.1 The mu-lambda contributions 33 4.2 The B-lambda contributions 36 4.3 Parameter variations 37 5 Conclusion 48

    [1] J. H. Christenson, J.W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13,
    138 (1964).
    [2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
    [3] B. Aubert et. al. (BABAR Collaboration), Phys. Rev. Lett. 87, 091801 (2001); K.
    Abe et. al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001).
    [4] L. Landau, Nucl. Phys. 3, 127 (1957).
    [5] M. Pospelov and A. Ritz, Ann. Phys. (N.Y.) 318, 119 (2005).
    [6] J. S. M. Ginges and V.V. Flambaum, Phys. Rep. 397, 63 (2004).
    [7] J. P.Archambault, A. Czarnecki and M. Pospelov, Phys. Rev. D 70, 073006 (2004);
    M. E. Pospelov and I. B. Khriplovich, Sov. J. Nucl. Phys. 53, 638 (1991) [Yad. Fiz.
    53, 1030 (1991)].
    [8] E. P. Shabalin, Sov. J. Nucl. Phys. 28, 75 (1978) [Yad. Fiz. 28, 151 (1978)]; M.
    B. Gavela, A. Le Yaouanc, L. Oliver, O. Pene, J. C. Raynal and T. N. Pham, Phys.
    Lett. B 109, 215 (1982); I. B. Khriplovich and A. R. Zhitnitsky, Phys. Lett. B 109,
    490 (1982).
    [9] B. C. Regan, E. D. Commins, C. J. Schmidt and D. DeMille, Phys. Rev. Lett. 88,
    071805 (2002).
    [10] O. C.W. Kong, Int. J. Mod. Phys. A 19, 1863 (2004).
    [11] For neutrino masses from R-parity Violation, see for example S. K. Kang and O.
    C. W. Kong, Phys. Rev. D69, 013004 (2004); O. C. W. Kong, JHEP 0009,037 (2000); A. S. Joshipura, R. D. Vaidya and S. K. Vempati , Nucl. Phys. B639, 290 (2002);
    Phys. Rev. D65, 053018 (2002).
    [12] For constraining both bilinear and trilinear couplings, see for example M. Drees, S.
    Pakvasa, X. Tata, and T. der Veldhuis, Phys. Rev. D57 (1998) 5335. For constraining
    both bilinear and trilinear couplings, see for example O.C. W. Kong, Neutrino oscillations
    and
    avor structure of supersymmetry without R-parity, Mod. Phys. Lett.
    A14 903 (1999); K. Cheung and O.C. W. Kong, Zee neutrino mass model in SUSY
    framework, Phys. Rev. D61 113012 (2000); A. Abada and M. Losada, Constraints on
    a general 3-generation neutrino mass matrix from neutrino data: application to the
    MSSM with R-parity violation, Nucl. Phys. B 585 (2000) 45. For constraining bilinear
    couplings only, see for example ; M.A. Diaz, M. Hirsch, W. Porod, J.C. Romao, J.W.F.
    Valle, Phys. Rev. D68 013009 (2003); Marek G o zd z and Wieslaw A. Kami nski, Phys.
    Rev. D78, 075021 (2008).
    [13] Y. Kizukuri and N. Oshimo, Phys. Rev. D 46, 3025 (1992).
    [14] R.M. Godbole, S. Pakvasa, S.D. Rindani, and X. Tata, Phys, Rev. D 61, 113003
    (2000); S.A. Abel, A. Dedes and H.K. Dreiner J. High Energy Phys.05, 013 (2000).
    Also see, D. Chang, W.-F. Chang, M. Frank, and W.Y. Keung, Phys. Rev. D62,
    095002 (2000).
    [15] Y.-Y. Keum and O.C.W. Kong, Phys, Rev. Lett. 86, 393 (2001); Phys, Rev. D
    63, 113012 (2001).
    [16] Chan-Chi Chiou, O. C.W. Kong , Rishikesh D. Vaidya, Phys.Rev.D76, 013003 (2007).
    [17] L. E. Ibanez and G. G. Ross, Nucl. Phys. B 368, 3 (1992).
    [18] M. Bisset, O. C. W. Kong, C. Macesanu and L. H. Orr, Phys. Lett. B 430, 274
    (1998).
    [19] O.C.W. Kong, JHEP 0009, 037 (2000).
    [20] M. Bisset, O. C. W. Kong, C. Macesanu and L. H. Orr, Phys. Rev. D 62, 035001
    (2000).
    [21] K. m. Cheung and O. C. W. Kong, Phys. Rev. D 64, 095007 (2001).

    QR CODE
    :::