跳到主要內容

簡易檢索 / 詳目顯示

研究生: 任裕靖
Yu-jing Ren
論文名稱: Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究
The study of sintering ability, microstructure, and conductivity of Ba0.8Sr0.2Ce0.8-xyZryInxY0.2O3- δ(x=0.05,0.1 y=0,0.1) Solid oxide fuel cell electrolyte material
指導教授: 鄭憲清
Shian-ching Jang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 導電率化學穩定性電解質固態氧化物燃料電池銦摻雜
外文關鍵詞: Indium doping
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功利用固相反應法製備Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,
    0.1 y=0,0.1)粉體,由於BaCeO3 具有高質子導電率,釔及鍶之摻雜可以增
    加導電率,鋯之摻雜可以增加化學穩定性,銦摻雜可以降低燒結溫度,非常
    適合應用於P-SOFC 之電解質材料。銦之摻雜對於燒結能力有明顯的提升,
    摻雜0.05 %收縮率增加了7 %,而且燒結溫度可以由1600 °C 下降至1450
    °C,經由SEM 觀察其破斷面非常緻密。而導電率在800 °C 氫氣氣氛下可
    達0.011 S/cm,達到目前商用的需求(0.01 S/cm)。並利用噴霧塗佈法來製備
    陽極支撐型半電池,將含有NiO 及造孔劑之Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ 乾壓
    成形,噴上電解質,共燒溫度為1450 °C,再塗佈白金作為陰極,進行電池
    功率之量測。


    Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ(0.0≦x≦0.2) proton-conducting oxides
    had been successfully prepared using a solid state reaction method. In this study,
    the effect of indium contents on the microstructures, chemical stability, electrical
    conductivity, and sintering ability of these Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ oxides
    were systemically studied by using X-ray diffraction (XRD), scanning electron
    microscopy, and two point probe conductivity analysis. The XRD results showed
    that no second phase could be resolved from the Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ
    oxides sintered at 1450 °C for 4 hr. Meanwhile, the SEM observation shows a
    dense surface morphology for these oxides after sintering at 1450 °C for 4 hr. The
    optimum conductivity can reach to 0.011 S/cm at 800 °C occurs at the oxide
    composition of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ. In addition, the chemical stability to
    resist CO2 at 600 °C can be effectively improved by doping more than 0.1 at%
    indium. Therefore, the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ ceramic is suggested to be a
    potential electrolyte material for P-SOFC applications. In addition, the anodesupported
    half-cell was prepared by spray coating the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-
    δ electrolyte slurry on the anode pellet , and sintered at 1450 °C for 4 hour. Then
    the sintered half-cell was coated with Pt paste as cathode for I-V curve testing.
    Keywords: SOFC, sinterability, conductivity, chemical stability, electrolyte,
    IndiumBa0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ(0.0≦x≦0.2) proton-conducting oxides
    had been successfully prepared using a solid state reaction method. In this study,
    the effect of indium contents on the microstructures, chemical stability, electrical
    conductivity, and sintering ability of these Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ oxides
    were systemically studied by using X-ray diffraction (XRD), scanning electron
    microscopy, and two point probe conductivity analysis. The XRD results showed
    that no second phase could be resolved from the Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ
    oxides sintered at 1450 °C for 4 hr. Meanwhile, the SEM observation shows a
    dense surface morphology for these oxides after sintering at 1450 °C for 4 hr. The
    optimum conductivity can reach to 0.011 S/cm at 800 °C occurs at the oxide
    composition of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ. In addition, the chemical stability to
    resist CO2 at 600 °C can be effectively improved by doping more than 0.1 at%
    indium. Therefore, the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ ceramic is suggested to be a
    potential electrolyte material for P-SOFC applications. In addition, the anodesupported
    half-cell was prepared by spray coating the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-
    δ electrolyte slurry on the anode pellet , and sintered at 1450 °C for 4 hour. Then
    the sintered half-cell was coated with Pt paste as cathode for I-V curve testing.
    Keywords: SOFC, sinterability, conductivity, chemical stability, electrolyte,
    Indium

    摘要 .................................................................................................................... i Abstract .............................................................................................................. ii 目錄 .................................................................................................................. iii 表目錄 ............................................................................................................. vii 圖目錄 ............................................................................................................. viii 第一章、前言 .................................................................................................... 1 1-1 緒論 .................................................................................................... 1 1-2 研究動機與目的 ................................................................................. 2 1-2-1 研究動機 ................................................................................. 2 1-2-2 研究目的 ................................................................................. 4 第二章、文獻回顧 ............................................................................................ 7 2-1 固態氧化物燃料電池 (Solid Oxide Fuel Cell, SOFC) ....................... 7 2-1-1 固態氧化物燃料電池的工作原理與機制 ............................... 7 2-1-2 固態氧化物燃料電池陽極材料 .............................................. 9 2-1-3 固態氧化物燃料電池電解質材料......................................... 12 2-1-4 固態氧化物燃料電池電解質材料之晶體結構 ..................... 12 2-1-4-1 螢石結構 (Fluorite structure) ............................................. 13 2-1-4-1-1 摻雜氧化鋯 (ZrO2) ......................................................... 13 2-1-4-1-2 摻雜氧化鈰 (CeO2) ........................................................ 13 2-1-4-2 鈣鈦礦結構 (Pervoskite structure ) .................................... 14 2-1-5 固態氧化物燃料電池陰極材料 ............................................ 14 2-2 粉末製備方法 ................................................................................... 17 2-2-1 固態反應法(SSR) .................................................................. 17 2-2-2 濕式化學法(Wet chemical methods) ...................................... 17 2-2-3 其他合成方法 ........................................................................ 17 2-3 BaCeO3 和BaZrO3 系統 .................................................................... 18 2-4 BaCeO3 摻雜稀土元素 ...................................................................... 19 2-5 BaCeO3 共摻雜不同元素 .................................................................. 21 第三章、實驗方法與步驟 .............................................................................. 28 3-1 粉體與試片製備 ............................................................................... 28 3-1-1 粉體的製備............................................................................ 28 3-1-2 坯體的製備............................................................................ 29 3-2 材料性質分析 ................................................................................... 30 3-2-1 X 光繞射分析 (XRD) ............................................................ 30 3-2-2 粉體粒徑量測 ........................................................................ 30 3-2-3 熱膨脹分析儀 (TDA) ........................................................... 31 3-2-4 收縮率量測 (Shrinkage) ....................................................... 31 3-2-5 掃描式電子顯微鏡分析 (SEM)............................................ 31 3-3 化學穩定性分析 ............................................................................... 32 3-4 導電率量測 ....................................................................................... 32 3-5 噴霧塗佈(Spray Coating) ................................................................. 33 3-5-1 陽極胚體製備 ........................................................................ 33 3-5-2 電解質漿料配製 .................................................................... 34 3-5-3 塗佈製程 ............................................................................... 34 第四章、結果與討論 ...................................................................................... 41 4-1 粉體粒徑分析 ................................................................................... 41 4-2 X 光繞射分析 .................................................................................... 41 4-3 熱膨脹分析 ....................................................................................... 42 4-4 SEM 破斷面分析 ............................................................................... 42 4-5 收縮率分析 ....................................................................................... 43 4-6 化學穩定性分析 ............................................................................... 44 4-7 導電率分析 ....................................................................................... 45 4-8 塗佈製程 .......................................................................................... 46 4-9 電解質I-V 性能測試 ....................................................................... 47 第五章、結論 .................................................................................................. 59 第六章、參考文獻 .......................................................................................... 61

    [1] A.D. J. Larminie, “Fuel cell system explained ”, 2003.
    [2] 黃鎮江, 燃料電池, vol. 3, 滄海書局, 2008.
    [3] Murray EP, Tsai T, Barnett SA, “A direct-methane fuel cell with a ceriabased
    anode”, Nature, vol. 400, pp. 649-651, 1999.
    [4] Chan SH, Ho HK, Tian Y, “Multi-level modeling of SOFC-gas turbine
    hybrid system”, Int J Hydrogen Energy, vol. 28, pp. 889-900, 2003.
    [5] Haile SM, “Fuel cell materials and components”, Acta Marer, vol. 51,
    pp.5981-6000, 2003.
    [6] Z.P. Shao, S.M. Haile, Nature, vol. 431, pp. 170–173, 2004.
    [7] W. Zhou, Z.P. Shao, R. Ran, R. Cui, Electrochem. Commun.
    [8] T. Ishihara, J.W. Yan, M. Shinagawa, H. Matsumoto, Electrochim. Acta, vol.
    52, pp. 1645–1650, 2006.
    [9] Shao ZP, Haile SM, “A high-performance cathode for the next generation
    of solid-oxide fuel cells”, Nature, vol. 431, 170-173, 2004.
    [10] Yang L, Zuo CD, Wang SH, Cheng Z, Liu M, “A novel composite cathode
    for low-temperature SOFCs based on oxide proton conductors”, Adv. Mater,
    vol. 20, pp. 3280-3283, 2008.
    [11] Tan WY, Zhong Q, Miao MS, Qu HX, “H2S Solid oxide fuel cell based on
    a modified barium cerate perovskite proton conductor”, Ionics, vol. 15, pp.
    385-388, 2009.
    [12] K.D. Kreuer, Annu. Rev, Mater. Res, vol. 33, pp. 333–339, 2003. H. Yugami,
    Y. Shibayama, T. Hattori, M. Ishigame, Solid State Ionics, vol. 79, pp. 171–
    176, 1995.
    [13] H. Yugami, Y. Shibayama, T. Hattori, M. Ishigame, Solid State Ionics, vol.
    79, pp. 171–176, 1995.
    [14] J.Guan,E.D. Stephen, B. Uthamalingam, M.L. Liu, Solid State Ionics,110,
    pp. 303–310, 1998.
    [15] K.D. Kreuer, "Proton-conducting oxides," Annual Review of Materials
    Research”, vol. 33, pp.333-359, 2003.
    [16] Takahashi T, Iwahara H. Solid–state ionics: protonic conduction in
    perovskite type oxide solid solutions. Rev Chim Miner.1980;17(4):243–53
    [17] Hoffmann A. Zeitschrift fuer Physikalische Chemie, Abteilung B:
    Chemie der Elementarprozesse. Aufbau der Materie 1935;28:65–77.
    [18] D. Medvedev , A. Murashkina , E. Pikalova , A. Demin , A. Podias ,P.
    Tsiakaras, BaCeO3: Materials development, properties and application,
    Progress in Materials Science, 60, 72–129, 2014.
    [19] K.R. Lee , C.J. Tseng , J.K. Chang , I.M. Hung , J.C. Lin ,S.W. Lee,
    Strontium doping effect on phase homogeneity and conductivity of Ba1-xSrxCe0.6Zr0.2Y0.2O3-δ proton conducting oxides, International Journal of
    Hydrogen Energy, Volume 38, Issue 25, 21 August 2013, Pages 11097-
    11103.
    [20] L. Bi, S.Q. Zhang, L. Zhang, Z.T. Tao, H.Q. Wang, W. Liu,Int. J. Hydrogen
    Energy34 (2009) 2421-2425.
    [21] F. Zhao, Q. Liu, S.W. Wang, K. Brinkman, F.L. Chen, Int.J. Hydrogen
    Energy 35(2010) 4258-4263.
    [22] N. Ito, H. Matsumoto, Y. Kawasaki, S. Okada, T. Ishihara,Solid State Ionics
    179(2008) 324-329.
    [23] S. Imashuku, T. Uda, Y. Nose, G. Taniguchi, Y. Ito, Y. Awakura, J.
    Electrochem.Soc. 156 (1) (2009) B1-B8.
    [24] Chunwen Sun, Ulrich Stimming, “Rwviw: Recent anode advancesin solid
    oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247–260, 2007.
    [25] S. Mclntosh, R.J. Gorte, Chem. Rev., vol. 104, pp. 4845–4865, 2004.
    [26] Tao, Z., Bi, L., Zhu, Z., Liu W., “Novel cobalt-free cathode materials
    BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells” Journal of
    Power Sources, vol. 194, No. 2, pp. 801-804, 2009.
    [27] KV Galloway and NM Sammes, “Fuel Cells – Solid Oxide Fuel Cells
    Anodes”, Encyclopedia of Electrochemical Power Sources, pp. 17-24, 2009.
    [28] H. Inaba and H. Tagawa, Ceria-based solid electrolytes, Solid State Ion.,
    vol. 83, pp. 1-16, 1996
    [29] C.W. Sun, J. Sun, G.L. Xiao, H.R. Zhang, X.P. Qiu, H. Li, L.Q. Chen, J.
    Phys. Chem. B, vol. 110, pp. 13445–13452, 2006.
    [30] N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov,
    B.Johansson, Phys. Rev. Lett., vol. 89, 166601, 2002.
    [31] N.M. Sammes, B.R. Roy,” FUEL CELLS – SOLID OXIDE FUEL CELLS
    | Cathodes”, Encyclopedia of Electrochemical Power Sources, pp.25–33,
    2009.
    [32] E. Ivers-Tiffée, “Electrolytes | Solid :oxygen ions”, Encyclopedia of
    Electrochemical Power Source, vol. , pp. 181-187, 2009.
    [33] Amsif M, Marrero-López D, Magrasó A, Peña-Martínez J, Ruiz-Morales
    JC, Núñez P. Synthesis and characterization of BaCeO3-based proton
    conductors obtained from freeze-dried precursors. J Eur Ceram Soc,
    2009;29(1):131–8.
    [34] Amsif M, Marrero–Lopez D, Ruiz–Morales JC, Savvin SN, Gabás M,
    Nunez P. Influence of rare-earth doping on themicrostructure and
    conductivity of BaCe0.9Ln0.1O3-δ proton conductors. J Power
    Sour ,2011;196(7):3461–9.
    [35] Khani Z, Taillades–Jacquin M, Taillades G, Marrony M, Jones DJ, Rozière
    J. New synthesis of nanopowders of protonconducting materials. A route to
    densified proton ceramics. J Solid State Chem ,2009;182(4):790–8.
    [36] Anselmi-Tamburini U, Buscaglia MT, Viviani M, Bassoli M, Bottino C,
    Buscaglia V, et al. Solid-state synthesis and spark plasma sintering of
    submicron BaYxZr1-xO3-x/2 (x = 0, 0.08 and 0.16) ceramics. J Eur Ceram
    Soc ,2006;26(12):2313–8.
    [37] Stuart PA, Unno T, Ayres–Rocha R, Djurado E, Skinner SJ. The synthesis
    and sintering behaviour of BaZr0.9Y0.1O3-δ powders prepared by spray
    pyrolysis. J Eur Ceram Soc, 2009;29(4):697–702.
    [38] Gdula-Kasica K, Mielewczyk-Gryn A, Molin S, Jasinski P, Krupa A, Kusz
    B, et al. Optimization of microstructure andproperties of acceptor-doped
    barium cerate. Solid State Ionics, 2012;225:245–9.
    [39] Kreuer KD. Aspects of the formation and mobility of protonic charge
    carriers and the stability of perovskite-type oxides. Solid State
    Ionics ,1999;125(4):285–302.
    [40] Bonanos N, Knight KS, Ellis B. Perovskite solid electrolytes: structure,
    transport properties and fuel cell applications. Solid State
    Ionics ,1995;79:161–70.
    [41] Medvedev DA, Gorbova EV, Demin AK, Antonov BD. Structure and
    electric properties of BaCe0.77-xZrxGd0.2Cu0.03O3-δ. Rus
    JElectrochem ,2011;47(12):1404–10.
    [42] Lu J, Wang L, Fan L, Li Y, Dai L, Guo H. Chemical stability of doped
    BaCeO3–BaZrO3 solid solutions in different atmospheres.J Rare
    Earth ,2008;26(4):505–10.
    [43] Fabbri E, D’Epifanio A, Bartolomeo ED, Licoccia S, Traversa E. Tailoring
    the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δprotonic conductors for
    intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State
    Ionics, 2008;179(15–16):558–64.
    [44] Lv J, Wang L, Lei D, Guo H, Kumar RV. Sintering, chemical stability and
    electrical conductivity of the perovskite protonconductors
    BaCe0.45Zr0.45M0.1O3-δ (M = In, Y, Gd, Sm). J Alloys Compd ,2009;476(1–
    2):376–82.
    [45] Zaja˛ca W, Hanc E, Gorzkowska–Sobas A, S´ wierczek K, Molenda J. Nddoped
    Ba(Ce,Zr)O3-δ proton conductors for application in conversion of
    CO2 into liquid fuels. Solid State Ionics ,2012;225:297–303.
    [46] Zhan SJ, Zhu XF, Wang WP, Yang WS. Stability and transport conductivity
    of perovskite type BaZrxCe0.8-xNd0.2O3-δ. Adv Mater Res 2012;554–
    556:404–7.
    [47] Ricote S, Bonanos N, Manerbino A, Coors WG. Conductivity study of
    dense BaCexZr(0.9-x)Y0.1O(3-δ) prepared by solid state reactive sintering at
    1500 °C. Int J Hydrogen Energy, 2012;27(9):7954–61.
    [48] Sawant P, Varma S, Wani BN, Bharadwaj SR. Synthesis, stability and
    conductivity of BaCe0.8-xZrxY0.2O3-δas electrolyte for proton conducting
    SOFC. Int J Hydrogen Energy ,2012;37(4):3848–56.
    [49] Malavasi L, Fisher CAJ, Saiful Islam M. Oxide-ion and proton conducting
    electrolyte materials for clean energy applications: structural and
    mechanistic features. Chem Soc Rev ,2010;39:4370–87
    [50] Wang M-Y, Qi L-G. Mixed conduction in BaCe0.8Pr0.2O3-δ ceramic. Chin
    J Chem Phys ,2008;21(3):286–90.
    [51] Sharova NV, Gorelov VP. Characteristics of proton-conducting electrolytes
    BaCe1-xNdxO3-δ (0 6 <x< 0.16) in moist air. Rus J Electrochem,
    2005;41(9):1001–7.
    [52] Gorbova E, Maragou V, Medvedev D, Demin A, Tsiakaras P. Investigation
    of the protonic conduction in Sm-doped BaCeO3.J Power
    Sour ,2008;181(2):207–13.
    [53] Maffei N, Pelletier L, Charland JP, McFarlan A. An ammonia fuel cell using
    a mixed ionic and electronic conducting electrolyte. J Power Sour,
    2006;162:165–7.
    [54] Chen C, Ma G. Proton conduction in BaCe1-xGdxO3-δ at intermediate
    temperature and its application to synthesis of ammonia at atmospheric
    pressure. J Alloys Compd ,2009;485(1–2):69–72.
    [55] Matskevich NI, Wolf TA. The enthalpies of formation of BaCe1-xRexO3-δ
    (Re = Eu, Tb, Gd). J Chem Thermod,2010;42(2):225–8.
    [56] Wang WB, Liu JW, Li YD, Wang HT, Zhang F, Ma GL. Microstructures
    and proton conduction behaviors of Dy-doped BaCeO3 ceramics at
    intermediate temperature. Solid State Ionics ,2010;181(15–16):667–71.
    [57] Wang M-Y, Qiu L-G, Ma G-L. Ionic conduction in Ba0.95Ce0.8Ho0.2O3-α.
    Chin J Chem, 2007;25(9):1273–7.
    [58] Yin J, Wang X, Xu J, Wang H, Zhang F, Ma G. Ionic conduction in BaCe0.85-
    xZrxEr0.15O3-α and its application to ammonia synthesis at atmospheric
    pressure. Solid State Ionics, 2011;185(1):6–10.
    [59] Qiu L-G, Wang M-Y. Ionic conduction and fuel cell performance of
    Ba0.98Ce0.8Tm0.2O3 ceramic. Chin J Chem Phys,2010;23(6):707–12
    [60] Matskevich NI, Wolf T, Matskevich MYu, Chupakhina TI. Preparation,
    stability and thermodynamic properties of Nd- andm Lu-doped BaCeO3
    proton-conducting ceramics. Eur J Inorg Chem ,2009;11:1477–82.
    [61] Norby T, Widerøe M, Glockner R, Larring Y. Hydrogen in oxides. Dalton
    Trans, 2004;19:3012–8.
    [62] Kreuer KD. Proton-conducting oxide. Annu Rev Mater Res ,2003;33:333–
    59.
    [63] Kilner JA. Fast oxygen transport in acceptor doped oxides. Solid State
    Ionics ,2000;129(1–4):13–23.
    [64] Yashiro K, Suzuki T, Kaimai A, Matsumoto H, Nigara Y, Kawada T, et al.
    Electrical properties and defect structure of niobiadoped ceria. Solid State
    Ionics, 2004;175(1–4):341–4
    [65] Zhao F, Chen F. Performance of solid oxide fuel cells based on protonconducting
    BaCe0.7In0.3-xYxO3-δ electrolyte. Int J Hydrogen
    Energy ,2010;35(20):11194–9.
    [66] Matskevich NI. Enthalpy of formation of BaCe0.9In0.1O3-δ. J Therm Anal
    Calorim, 2007;90(3):955–8.
    [67] Bi L, Zhang SQ, Zhang L, Tao ZT, Wang HQ, Liu W. Indium as an ideal
    functional dopant for a proton-conducting solid oxide fuel cell. Int J
    Hydrogen Energy, 2009;34(5):2421–5.
    [68] Zhang C, Zhao H. Influence of In content on the electrical conduction
    behavior of Sm- and In-co-doped proton conductor BaCe0.80-xSm0.20InxO3-
    δ. Solid State Ionics ,2012;206(5):17–21.
    [69] Zhang C, Zhao H. Electrical conduction behavior of Sr substituted proton
    conductor Ba1-xSrxCe0.9Nd0.1O3-δ. Solid State Ionics ,2010;181(33–
    34):1478–85.
    [70] Shijing Zhan, Xuefeng Zhu, Baofeng Ji, Weiping Wang, Xiao liang Zhanga,
    JiboWang, Wei shen Yang, Li wu Lin, “Preparation and hydrogen
    permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes”, Journal of
    Membrane Science, vol. 340, pp. 241-248, 2009.
    [71] Xiao tong Wei, Y.S. Lin, “Protonic and electronic conductivities of terbium
    doped strontium cerates”, Solid State Ionics, vol. 178, pp. 1804–1810, 2008.
    [72] Fei Zhao , Qiang Liu , Siwei Wang, Kyle Brinkman , Fanglin Chen ,
    Synthesis and characterization of BaIn0.3-xYxCe0.7O3-δ(x =0, 0.1, 0.2, 0.3)
    proton conductors, j o u r n a l o f hydrogen energy ,3 2 0 1 0 )4 2 5 8 –
    4 2 6 3.
    [73] Xiao tong Wei, Jay Kniep, Y.S. Lin., “Hydrogen permeation through
    terbium doped strontium cerate membranes enabled by presence of
    reducing gas in the downstream”, Journal of Membrane Science, vol. 345,
    pp. 201-206, 2009.

    QR CODE
    :::