跳到主要內容

簡易檢索 / 詳目顯示

研究生: 馮瑄
Hsuan Feng
論文名稱: 開發新穎三元金屬–有機架構化合物作為析氧反應之 高性能電催化劑
Novel Trimetallic Metal-Organic Framework as High Performance Electrocatalysts for Oxygen Evolution Reaction
指導教授: 洪政雄
Chen-Hsiung Hung
陳銘洲
Ming-Chou Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 101
中文關鍵詞: 三元金屬有機架構化合物
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於環保意識的興起,為解決能源危機和環境污染的問題,電催化分解水
    產氫技術已成為熱門的研究議題。全電解水的過程,是由兩個半反應所組成,其中析氧
    反應需經過四個電子的轉移及氧氧化學鍵的形成過程,反應動力學相當緩慢,需要額外
    提供更高的能量才能跨越反應所需之活化能,成為在總反應中之反應瓶頸。金屬–有機
    架構化合物(Metal–organic frameworks, MOF)具有高表面積以及高孔隙率,同時金屬離
    子可均勻分佈於結構中,為 OER 電催化反應提供豐富的金屬活性位點。本篇論文中,
    先以水熱合成法,成功合成新穎的 C-MOF(鈷 MOF),利用單晶 X-ray 繞射儀(SCXRD)
    解析其固態晶體結構。C-MOF 可以應用為OER 催化劑,並以原位生長方式成功合成二
    元及三元的CN-MOF(鈷鎳MOF)及FCN-MOF(鐵鈷鎳MOF),在1 M 的KOH 中研究協
    同效應對其電催化效能之影響。催化劑中金屬活性位點上的電子密度分佈,在電催化活
    性上扮演著關鍵角色。本篇論文中,我們亦透過簡單的白金奈米粒子(Pt nanoparticles, Pt
    NPs)修飾來微調中心金屬的電子組態,進而有效降低發生OER 反應時所需之額外能量,
    並利用粉末X-ray 繞射儀(PXRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、
    感應耦合電漿光學發射光譜儀(ICP-OES)以及高解析光電子能譜儀(XPS)確認其性質。與
    未經修飾的三元 FCN-MOF 相比,經過 Pt NPs 修飾的FCN-MOF-Pt1 具有較佳的電催化
    表現,η10 和η500 分別從204 和261 mV 分別降低到 182 和 244 mV。過電位的降低,可
    歸因於高電負度的Pt NPs 修飾後,鐵、鈷和鎳的氧化態會顯著升高所導致。並且 FCN-
    MOF-Pt1 在500 mA cm−2 的高電流密度下,持續工作 50 小時後,電流密度僅降低 7%,
    這優異的結果可歸因於合成時採用原位成長方式,將 MOF 直接生長於泡沫鎳的骨架上
    可以更加穩定,且在高電流密度下能有更出色的耐受性。


    In recent years, the urgent need to address climate change necessitates the phasing out of fossil
    fuels by 2050. To tackle the dual challenges of energy crises and environmental pollution,
    electrocatalytic water splitting for hydrogen production has emerged as a key research area.
    This process involves two half-reactions, with the oxygen evolution reaction (OER) being
    particularly crucial due to its slow kinetics and high energy requirements. Metal–organic
    frameworks (MOFs), characterized by high surface area and porosity, uniformly distribute
    metal ions, providing abundant active sites for OER.
    In this study, a novel C-MOF was synthesized using hydrothermal methods and analyzed with
    single-crystal X-ray diffraction (SCXRD). Further, di-metallic CN-MOF and tri-metallic FCN-
    MOF were synthesized via in-situ growth and applied as OER catalysts. The synergistic effects
    among iron (Fe), cobalt (Co), and nickel (Ni) were investigated in 1 M KOH. The electronic
    states of the catalysts' active sites were found to be critical in determining their electrocatalytic
    performance.
    Additionally, platinum was deposited onto FCN-MOF using a simple sputtering method to
    adjust the electronic configuration of the active metal centers, thereby reducing the energy
    required for the OER. Characterization using powder X-ray diffraction (PXRD), scanning
    electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled
    plasma optical emission spectrometry (ICP-OES), and high-resolution X-ray photoelectron
    spectroscopy (HRXPS) confirmed these modifications.
    Compared to the unmodified tri-metallic FCN-MOF, the platinum-modified FCN-MOF-Pt1
    exhibited superior electrocatalytic performance, with η10 and η500 reduced from 204 mV and
    261 mV to 182 mV and 244 mV, respectively. The decrease in overpotential is attributed to theelevated oxidation states of Fe, Co, and Ni induced by the highly electronegative platinum.
    Moreover, after continuous operation at a high current density of 500 mA cm−2 for 50 hours, the
    current density of FCN-MOF-Pt1 decreased by only 7%. This stability is attributed to the in-situ growth method, which provides enhanced stability and tolerance under high current
    densities by growing the MOF directly on the nickel foam skeleto

    摘要 ............................................................................................................................................. I Abstract ...................................................................................................................................... II 致謝 .......................................................................................................................................... IV 目錄 ........................................................................................................................................... V 圖目錄 ................................................................................................................................... VIII 表目錄 ...................................................................................................................................... XI 第一章 緒論 .............................................................................................................................. 1 1-1 能源 ............................................................................................................................. 1 1-2 電催化分解水 ............................................................................................................. 3 1-2-1 OER 反應機制 ................................................................................................. 5 1-2-2 OER 反應中間體之偵測 9 ............................................................................... 7 1-2-3 電催化劑效率評估參數 13 ............................................................................... 9 1-3 晶體工程 ................................................................................................................... 12 1-3-1 配位聚合物 ................................................................................................... 12 1-3-2 配位聚合物之合成—自組裝合成法 ........................................................... 14 1-3-3 配位聚合物之組成 ....................................................................................... 16 1-4 提升電催化劑之性能 ............................................................................................... 19 1-5 電極製備方式 ........................................................................................................... 21 第二章 實驗設計概念 ............................................................................................................ 23 第三章 實驗部分 .................................................................................................................... 25 3-1 儀器 ........................................................................................................................... 25 3-2 藥品 ........................................................................................................................... 26 3-3 催化劑合成 ............................................................................................................... 27 3-3-1 Nickel foam 前置處理 .................................................................................... 27 VI 3-3-2 合成C-MOF .................................................................................................. 27 3-3-3 合成CN-MOF@NF ...................................................................................... 27 3-3-4 合成FCN-MOF@NF .................................................................................... 28 3-3-5 Pt NPs 修飾FCN-MOF-Pt ............................................................................. 28 3-4 材料鑑定 ................................................................................................................... 29 3-4-1 粉末X-ray 繞射儀(PXRD) ........................................................................... 29 3-4-2 感應耦合電漿光學發射光譜儀(ICP-OES) .................................................. 29 3-4-3 掃描電子顯微鏡(SEM) ................................................................................. 29 3-4-4 穿透電子顯微鏡(TEM) ................................................................................ 29 3-5 製備催化劑電極 ....................................................................................................... 30 3-5-1 Nafion 稀釋 .................................................................................................... 30 3-5-2 製備商用粉末(benchmark electrocatalysts) ................................................. 30 3-5-3 製備C-MOF 電催化劑 ................................................................................. 31 3-5-4 定義電催化劑面積 ....................................................................................... 31 3-5-5 製備ECSA 電極 ........................................................................................... 31 3-6 電化學 ....................................................................................................................... 31 3-6-1 線性掃描伏安法 ........................................................................................... 31 3-6-2 電化學催化效率表現 ................................................................................... 32 3-6-3 電化學電容(capacitance) .............................................................................. 32 3-6-4 電化學阻抗分析(EIS) ................................................................................... 33 3-6-5 電催化轉換頻率(turn over frequency, TOF) ................................................ 33 3-6-6 原位拉曼(in-situ Raman) .............................................................................. 34 3-6-7 法拉第效率(Faradaic efficiency) .................................................................. 35 第四章 結果與討論 ................................................................................................................ 37 4-1 化合物之結構 ........................................................................................................... 37 4-2 材料鑑定 ................................................................................................................... 41 4-2-1 粉末X-ray 繞射儀(PXRD) ........................................................................... 41 4-2-2 掃描電子顯微鏡(SEM) ................................................................................. 42 4-2-3 穿透電子顯微鏡(TEM) ................................................................................ 46 4-2-4 感應耦合電漿光學發射光譜儀(ICP-OES) .................................................. 47 4-2-5 高解析光電子能譜儀(HRXPS) .................................................................... 48 4-3 電催化效能 ............................................................................................................... 52 4-3-1 線性掃描伏安法(LSV) ................................................................................. 52 4-3-2 電化學阻抗分析(EIS) ................................................................................... 57 4-3-3 電化學活性表面積(ECSA) ........................................................................... 59 4-3-4 電催化轉換頻率(TOF) ................................................................................. 61 4-3-5 拉曼光譜學(in-situ Raman spectroscopy) .................................................... 63 4-3-6 長效穩定性測試 ........................................................................................... 65 4-3-7 法拉第效率(Faradaic efficiency) .................................................................. 70 第五章 結論 ............................................................................................................................ 73 參考資料 .................................................................................................................................. 75 附錄 .......................................................................................................................................... 82

    (1) Ali, M.; Pervaiz, E.; Noor, T.; Rabi, O.; Zahra, R.; Yang, M. Recent advancements in MOF-
    based catalysts for applications in electrochemical and photoelectrochemical water splitting: A
    review. International Journal of Energy Research 2021, 45 (2), 1190-1226.
    (2) 財團法人台灣經濟研究院. 氫能源是什麼?未來能源新趨勢,有望成為解決能源危
    機的新能源.
    https://www.thfcp.org.tw/xcindustry/cont?xsmsid=0L265415022626956988&qcat=0L265422
    226276623429&sid=0N220430132773778160
    (3) Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water Splitting: From
    Electrode to Green Energy System. Nano-Micro Letters 2020, 12 (1), 131.
    (4) Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Electrocatalysis for
    the oxygen evolution reaction: recent development and future perspectives. Chemical Society
    Reviews 2017, 46 (2), 337-365.
    (5) LYTE, n. Heterogeneous Electrocatalysis Nanoparticle catalysts for electrochemistry.
    https://www.nikalyte.com/applications-of-nanoparticles-3/
    (6) Wang, H.; Yang, Y.; Liu, J.; Wu, H.; Wu, K.; Lyu, C.; Wu, J.; Lau, W.-M.; Wu, Q.; Zheng,
    J. The role of manganese-based catalyst in electrocatalytic water splitting: Recent research and
    progress. Materials Today Physics 2023, 36, 101169.
    (7) Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Emerging Two-
    Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews 2018, 118 (13), 6337-6408.
    (8) Kishore, M. R. A.; Varunaa, R.; Bayani, A.; Larsson, K. Theoretical investigation on BeN2
    monolayer for an efficient bifunctional water splitting catalyst. Scientific Reports 2020, 10 (1),
    21411.
    (9) Chen, S.; Ma, L.; Huang, Z.; Liang, G.; Zhi, C. In situ/operando analysis of surface
    reconstruction of transition metal-based oxygen evolution electrocatalysts. Cell Reports
    76
    Physical Science 2022, 3 (1), 100729.
    (10) Jin, L.; Seifitokaldani, A. In Situ Spectroscopic Methods for Electrocatalytic CO2
    Reduction. Catalysts 2020, 10 (5), 481.
    (11) Chen, M.; Liu, D.; Qiao, L.; Zhou, P.; Feng, J.; Ng, K. W.; Liu, Q.; Wang, S.; Pan, H. In-
    situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chemical
    Engineering Journal 2023, 461, 141939.
    (12) Li, Y.; Wu, Y.; Hao, H.; Yuan, M.; Lv, Z.; Xu, L.; Wei, B. In situ unraveling surface
    reconstruction of Ni5P4@FeP nanosheet array for superior alkaline oxygen evolution reaction.
    Applied Catalysis B: Environmental 2022, 305, 121033.
    (13) Yuan, C.-Z.; Hui, K. S.; Yin, H.; Zhu, S.; Zhang, J.; Wu, X.-L.; Hong, X.; Zhou, W.; Fan,
    X.; Bin, F.; et al. Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts
    and the Potential Applications for Electrocatalytic Water Splitting. ACS Materials Letters 2021,
    3 (6), 752-780.
    (14) Ingsel, T.; de Souza, F. M.; Gupta, R. K. Introduction to Electrocatalysts; American
    Chemical Society, 2022.
    (15) Henke, S. Metal-Organic Frameworks with Additional Flexible Substituents – Modulating
    Responsiveness, Gas Sorption Selectivity & Network Topologies. 2012.
    (16) Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing
    Large Rectangular Channels. Journal of the American Chemical Society 1995, 117 (41), 10401-
    10402.
    (17) De Villenoisy, T.; Zheng, X.; Wong, V.; Mofarah, S. S.; Arandiyan, H.; Yamauchi, Y.;
    Koshy, P.; Sorrell, C. C. Principles of Design and Synthesis of Metal Derivatives from MOFs.
    Advanced Materials 2023, 35 (24), 2210166.
    (18) Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295 (5564),
    2418-2421.
    (19) Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Metal–Organic Frameworks and Self-Assembled
    77
    Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis,
    and Functionality of Metal–Organic Materials. Chemical Reviews 2013, 113 (1), 734-777.
    (20) Sasikala, S. P.; Poulin, P.; Aymonier, C. Advances in Subcritical Hydro-/Solvothermal
    Processing of Graphene Materials. Advanced Materials 2017, 29 (22), 1605473.
    (21) Bian, Y.; Xiong, N.; Zhu, G. Technology for the Remediation of Water Pollution: A Review
    on the Fabrication of Metal Organic Frameworks. Processes 2018, 6 (8), 122.
    (22) Hou, Z.; Cui, C.; Li, Y.; Gao, Y.; Zhu, D.; Gu, Y.; Pan, G.; Zhu, Y.; Zhang, T. Lattice-Strain
    Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. Advanced
    Materials 2023, 35 (39), 2209876.
    (23) Senthil Raja, D.; Huang, C.-L.; Chen, Y.-A.; Choi, Y.; Lu, S.-Y. Composition-balanced
    trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current
    densities. Applied Catalysis B: Environmental 2020, 279, 119375.
    (24) Sanati, S.; Morsali, A.; García, H. First-row transition metal-based materials derived from
    bimetallic metal–organic frameworks as highly efficient electrocatalysts for electrochemical
    water splitting. Energy & Environmental Science 2022, 15 (8), 3119-3151.
    (25) Kumar, T.; Karmakar, A.; Halder, A.; Koner, R. R. Ni(II)-Based Coordination Polymer
    with Pi-Conjugated Organic Linker as Catalyst for Oxygen Evolution Reaction Activity. Energy
    & Fuels 2022, 36 (5), 2722-2730.
    (26) Dickie, D. A.; Lee, P. T. K.; Labeodan, O. A.; Schatte, G.; Weinberg, N.; Lewis, A. R.;
    Bernard, G. M.; Wasylishen, R. E.; Clyburne, J. A. C. Flexible coordination of the carboxylate
    ligand in tin(ii) amides and a 1,3-diaza-2,4-distannacyclobutanediyl. Dalton Transactions 2007,
    (27), 2862-2869.
    (27) Du, J.; Zhang, F.; Jiang, L.; Guo, Z.; Song, H. Enhanced cobalt MOF electrocatalyst for
    oxygen evolution reaction via morphology regulation. Inorganic Chemistry Communications
    2023, 158, 111661.
    (28) Cheng, C.-C.; Lin, T.-Y.; Ting, Y.-C.; Lin, S.-H.; Choi, Y.; Lu, S.-Y. Metal-organic
    78
    frameworks stabilized Mo and W binary single-atom catalysts as high performance bifunctional
    electrocatalysts for water electrolysis. Nano Energy 2023, 112, 108450.
    (29) Cheng, C.-C.; Cheng, P.-Y.; Huang, C.-L.; Senthil Raja, D.; Wu, Y.-J.; Lu, S.-Y. Gold
    nanocrystal decorated trimetallic metal organic frameworks as high performance
    electrocatalysts for oxygen evolution reaction. Applied Catalysis B: Environmental 2021, 286,
    119916.
    (30) Zuo, C.; Scully, A. D.; Gao, M. Drop-Casting Method to Screen Ruddlesden–Popper
    Perovskite Formulations for Use in Solar Cells. ACS Applied Materials & Interfaces 2021, 13
    (47), 56217-56225.
    (31) Lv, Y.; Gong, J. R. In situ growth of MOF-derived ultrafine molybdenum carbide
    nanoparticles supported on Ni foam as efficient hydrogen-evolution electrocatalysts. Journal
    of Materials Chemistry A 2021, 9 (27), 15246-15253.
    (32) Ding, X.; Liu, H.; Chen, J.; Wen, M.; Li, G.; An, T.; Zhao, H. In situ growth of well-aligned
    Ni-MOF nanosheets on nickel foam for enhanced photocatalytic degradation of typical volatile
    organic compounds. Nanoscale 2020, 12 (17), 9462-9470.
    (33) Chen, N.; Che, S.; Liu, H.; Ta, N.; Li, G.; Chen, F.; Ma, G.; Yang, F.; Li, Y. In Situ Growth
    of Self-Supporting MOFs-Derived Ni2P on Hierarchical Doped Carbon for Efficient Overall
    Water Splitting. Catalysts 2022, 12 (11), 1319.
    (34) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F.
    Combining theory and experiment in electrocatalysis: Insights into materials design. Science
    2017, 355 (6321), eaad4998.
    (35) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous
    Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society
    2013, 135 (45), 16977-16987.
    (36) Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.;
    Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting:
    79
    revisiting activity parameters with a critical assessment. Energy & Environmental Science 2018,
    11 (4), 744-771.
    (37) Wang, S.; Ye, B.; An, C.; Wang, J.; Li, Q.; Guo, H.; Zhang, J. Exploring the Coordination
    Effect of GO@MOF-5 as Catalyst on Thermal Decomposition of Ammonium Perchlorate.
    Nanoscale Research Letters 2019, 14 (1), 345.
    (38) Zhou, W. Reversed Crystal Growth. Crystals 2019, 9 (1), 7.
    (39) Zhang, Z.-C.; Hui, J.-F.; Guo, Z.-G.; Yu, Q.-Y.; Xu, B.; Zhang, X.; Liu, Z.-C.; Xu, C.-M.;
    Gao, J.-S.; Wang, X. Solvothermal synthesis of Pt–Pd alloys with selective shapes and their
    enhanced electrocatalytic activities. Nanoscale 2012, 4 (8), 2633-2639.
    (40) Yuan, H.; Wan, X.; Ye, J.; Ma, T.; Ma, F.; Gao, J.; Gao, W.; Wen, D. Molecular Engineering
    of Noble Metal Aerogels Boosting Electrocatalytic Oxygen Reduction. Advanced Functional
    Materials 2023, 33 (37), 2302561.
    (41) Huang, C.-L.; He, Z.-F.; Pai, J.-Y.; Yang, Y.-H.; Jao, W.-Y.; Lai, C.-Y.; Lu, Y.-T.; Ku, H.-
    Y.; Hu, C.-C. Atomically well-mixed quad-metallic sulfide as multi-functional electrocatalyst
    for overall water electrolysis and zinc-air battery. Chemical Engineering Journal 2023, 469,
    143855.
    (42) Mu, G.; Miao, Y.; Wu, M.; Xiang, Q.; Lin, D.; Xu, C.; Xie, F. Communication—Fe-MOF
    Exhibits Higher Oxygen Evolution Ability by Electronic Modulation of Sodium Hypochlorite.
    Journal of The Electrochemical Society 2021, 168 (12), 126508.
    (43) Maria, S.; Theophilos, I. Synthesis of Cobalt-Based Nanomaterials from Organic
    Precursors; IntechOpen, 2017.
    (44) Yin, D.; Tang, J.; Bai, R.; Yin, S.; Jiang, M.; Kan, Z.; Li, H.; Wang, F.; Li, C. Cobalt
    Phosphide (Co2P) with Notable Electrocatalytic Activity Designed for Sensitive and Selective
    Enzymeless Bioanalysis of Hydrogen Peroxide. Nanoscale Research Letters 2021, 16 (1), 11.
    (45) Kitchamsetti, N.; Ramteke, M. S.; Rondiya, S. R.; Mulani, S. R.; Patil, M. S.; Cross, R.
    W.; Dzade, N. Y.; Devan, R. S. DFT and experimental investigations on the photocatalytic
    80
    activities of NiO nanobelts for removal of organic pollutants. Journal of Alloys and Compounds
    2021, 855, 157337.
    (46) Cheng, M.; Fan, H.; Song, Y.; Cui, Y.; Wang, R. Interconnected hierarchical NiCo2O4
    microspheres as high-performance electrode materials for supercapacitors. Dalton Transactions
    2017, 46 (28), 9201-9209.
    (47) Wang, L.; Zhang, H.; Li, Y.; Xiao, S.; Bi, F.; Zhao, L.; Gai, G.; Yang, X. Construction of
    bundle-like cobalt/nickel hydroxide nanorods from metal organic framework for high-
    performance supercapacitors. Journal of Materials Science: Materials in Electronics 2022, 33
    (13), 10540-10550.
    (48) Song, X.-Z.; Zhao, Y.-H.; Zhang, F.; Ni, J.-C.; Zhang, Z.; Tan, Z.; Wang, X.-F.; Li, Y.
    Coupling Plant Polyphenol Coordination Assembly with Co(OH)2 to Enhance Electrocatalytic
    Performance towards Oxygen Evolution Reaction. Nanomaterials 2022, 12 (22), 3972.
    (49) Shan, J.; Liu, Y.; Su, Y.; Liu, P.; Zhuang, X.; Wu, D.; Zhang, F.; Feng, X. Graphene-directed
    two-dimensional porous carbon frameworks for high-performance lithium–sulfur battery
    cathodes. Journal of Materials Chemistry A 2016, 4 (1), 314-320.
    (50) Kang, C.; Lee, Y.; Kim, I.; Hyun, S.; Lee, T. H.; Yun, S.; Yoon, W.-S.; Moon, Y.; Lee, J.;
    Kim, S.; et al. Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper
    Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode.
    Materials 2019, 12 (8), 1324.
    (51) Mazzotta, E.; Rella, S.; Turco, A.; Malitesta, C. XPS in development of chemical sensors.
    RSC Advances 2015, 5 (101), 83164-83186.
    (52) Wang, J.; Rathi, S.; Singh, B.; Lee, I.; Joh, H.-I.; Kim, G.-H. Alternating Current
    Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient
    Hydrogen Gas Sensor. ACS Applied Materials & Interfaces 2015, 7 (25), 13768-13775.
    (53) Zhu, L.; Kapoor, S.; Parry, Q.; Nahata, A.; Virkar, A. V. Oxidation/reduction studies on
    nanoporous platinum films by electrical resistance measurements. Journal of Power Sources
    81
    2014, 269, 621-631.
    (54) Kim, K. T.; Jin, S.-H.; Chang, S.-C.; Park, D.-S. Green synthesis of platinum nanoparticles
    by electroreduction of a K2PtCl6 solid-state precursor and its electrocatalytic effects on H2 O2
    reduction. Bulletin of the Korean Chemical Society 2013, 34 (12), 3835-3839.
    (55) Agarwal, S.; Phukan, P.; Sarma, D.; Deori, K. Versatile precursor-dependent copper sulfide
    nanoparticles as a multifunctional catalyst for the photocatalytic removal of water pollutants
    and the synthesis of aromatic aldehydes and NH-triazoles. Nanoscale Advances 2021, 3 (13),
    3954-3966.
    (56) Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic Oxygen Evolution Reaction (OER) on
    Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS
    Catalysis 2012, 2 (8), 1765-1772.
    (57) Lee, W. H.; Han, M. H.; Ko, Y.-J.; Min, B. K.; Chae, K. H.; Oh, H.-S. Electrode
    reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with
    intermediate-spin state during electrolysis. Nature Communications 2022, 13 (1), 605.
    (58) Xu, J.; Wang, B.-X.; Lyu, D.; Wang, T.; Wang, Z. In situ Raman investigation of the
    femtosecond laser irradiated NiFeOOH for enhanced electrochemical ethanol oxidation
    reaction. International Journal of Hydrogen Energy 2023, 48 (29), 10724-10736.
    (59) Liu, Y.-C.; Koza, J. A.; Switzer, J. A. Conversion of electrodeposited Co(OH)2 to CoOOH
    and Co3O4, and comparison of their catalytic activity for the oxygen evolution reaction.
    Electrochimica Acta 2014, 140, 359-365.
    (60) Bai, L.; Lee, S.; Hu, X. Spectroscopic and Electrokinetic Evidence for a Bifunctional
    Mechanism of the Oxygen Evolution Reaction. Angewandte Chemie International Edition 2021,
    60 (6), 3095-3103.

    QR CODE
    :::