跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張允瑄
Yun-Xuan Zhang
論文名稱: Void closure dynamics in the densifying spindle-shaped fibroblast monolayer
指導教授: 伊林
Lin I
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 58
中文關鍵詞: 細胞自主性向列結構細胞運動集體運動
外文關鍵詞: Cells, Active nematics, Cell migration, Collective dynamics
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單層緻密細胞的集體運動在生物系統中扮演著重要的角色,如胚胎形成、癌細胞轉移、傷口癒合等。主動爬行的細胞可通過細胞間隙 (cell junction) 與鄰近細胞產生交互作用,形成強耦合自主多體系統 (coupled many-body active system)。此外,細胞型態可更進一步影響集體合作運動的狀態。
    我們研究單層緻密纖維母細胞形成過程中結構及動力行為的演化。單層纖維母細胞形成相互連結的細胞網路後,空洞 (無細胞區) 的大小呈現多重尺度分布。細胞經由細胞分裂及自主爬行運動填滿空間中的空洞以形成單層緻密細胞。在此過程中,長形纖維母細胞與鄰近細胞呈平行排列並形成向列區塊 (nematic domain)。隨著細胞分裂,這些向列區塊與鄰近區塊相遇並在交界處產生非均向排列的區域,導致細胞團簇在邊界上形成不規則的形狀,進而影響空洞的結構與周圍細胞的動力行為以及單層緻密細胞的形成過程。
    邊界的不規則度隨空洞大小遞增。大尺度的不規則空洞讓突出細胞(protruding cusp tips) 更容易在空洞的邊界形成,並透過自主爬行運動形成橋狀突出至大空洞對邊,將之分裂為小尺度空洞。長形纖維母細胞之型態逐漸隨著細胞密度增加而變短,減少細胞向列之特性,進而准許小尺度空洞周圍的細胞突破拓樸限制 (topological constraint) 並以推擠及細胞換位的方式填滿空洞。因此,單層緻密纖維母細胞的形成將經歷大尺度及小尺度空洞塌縮的兩個不同階段。


    Cell monolayer plays a crucial role in many biological processes including embryogenesis, tumorigenesis, and wound healing. It is a model coupled many-body active systems exhibiting collective motions through the interaction between the self-propelling and mutual couplings. Different from cobblestone-like epithelial cells which exhibit isotropic migrating directions, spindle-shaped fibroblasts migrate along their long axis and align with their neighbors, resulting in the formation of nematic domains and topological defects in cell monolayers. While the dynamics and structures of confluent cell monolayer are well studied, the collapsing processes of the cell-free areas (voids) in the densification of fibroblast monolayer before reaching the confluent state remain obscure.
    In this work, we experimentally investigate the dynamical evolutions of the densifying spindle-shaped fibroblast monolayer before reaching the confluent state. It is found that, after cells form a connected network, voids are spontaneously formed with multiscale sizes, whose boundaries can be classified into convex and cusp-shaped concave boundaries. With increasing time, voids collapse due to the increasing cell density through cell proliferation. For large voids, cells at the cusp shaped concave boundary form extending bridges to split a large void into smaller voids. In smaller voids, the crowding induced by increasing cell density shortens cell lengths. It decreases the nematic cell alignment effect and allows cell topological rearrangements nearby the convex void boundaries, which in turn reduces the number of cells surrounding the void boundary and is the key for the final void closure.

    1. Introduction ...1 2. Background ...5 2.1 Individual cell motion and cell morphologies...5 2.2 Collective cell motion...6 2.3 Voids in various extended media...7 2.4 Voids in anisotropic cell monolayer ...8 3. Experiment and Analysis...10 3.1 Cell culture...10 3.2 Observation system...11 3.3 Data analysis...13 3.3.1 Void boundary detection ...14 3.3.2 Cell shape and orientation detection...15 4. Results and Discussion ...18 4.1 Void formation in fibroblast monolayer...18 4.2 Collapsing dynamics of spontaneously formed voids...22 4.2.1 Split of large void into smaller voids ...22 4.2.2 Small void collapsing and final closure...25 4.2.3 Statistical behaviors of voids...32 4.3 Comparison with previous works...33 5. Conclusion ...35 Bibliography ...37 Appendix ...43

    [1] C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).
    [2] M. Versluis, B. Schmitz, A. von der Heydt, and D. Lohse, How snapping shrimp snap: through cavitating bubbles, Science 289, 2114 (2000).
    [3] C. D. Ohl, O. Lindau, and W. Lauterborn, Luminescence from spherically and aspherically closure laser induced bubbles, Phys. Rev. Lett. 80, 393 (1998).
    [4] O. Baghdassarian, H. C. Chu, B. Tabbert, and G. A. Williams, Spectrum of luminescence from laser-created bubbles in water, Phys. Rev. Lett. 86, 4934 (2001).
    [5] Y. H. Chen, H. Y. Chu, and L. I, Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap, Phys. Rev. Lett. 96, 034505 (2006).
    [6] Y. H. Chen and L. I, Dynamics of impacting a bubble by another pulsed-laser-induced bubble: Jetting, fragmentation, and entanglement, Phys. Rev. E 77, 026304 (2008).
    [7] O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz, and M. Farhat, Shock waves from nonspherical cavitation bubbles, Phys. Rev. Fluids 2, 093601 (2017).
    [8] G. N. Sankin, F. Yuan, and P. Zhong, Pulsating tandem microbubble for localized and directional single-cell membrane poration, Phys. Rev. Lett. 105, 078101 (2010).
    [9] M. S. Plesset and R. B. Chapman, J. Fluid Mech. 47, 283 (1971).
    [10] E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, Phys. Fluids 14, 85 (2002).
    [11] R. B. Robinson et al., J. Appl. Phys. 89, 8225 (2001).
    [12] E. Anon, X. S. Picamal, P. Hersen, N. C. Gauthier, M. P. Sheetz, X. Trepat, and B. Ladoux, Cell crawling mediates collective cell migration to close undamaged epithelial gaps, Proc. Natl. Acad. Sci. U.S.A. 109, 10891 (2012).
    [13] O. C. Escartin, J. Ranft, P. Silberzan, and P. Marcq, Border forces and friction control epithelial closure dynamics. Biophys. J. 106, 65 (2014).
    [14] A. Ravasio et al., Gap geometry dictates epithelial closure efficiency, Nat. Commun. 6, 7683 (2015).
    [15] A. Brugués, E. Anon, V. Conte, J. H. Veldhuis, M. Gupta, J. Colombelli, J. J. Muñoz, G. W. Brodland, B. Ladoux, and X. Trepat, Forces driving epithelial wound healing, Nat. Phys. 10, 683 (2014).
    [16] V. Ajeti et al., Wound healing coordinates actin architectures to regulate mechanical work. Nat. Phys. 15, 696 (2019).
    [17] K. D. Nnetu, M. Knorr, D. Strehle, M. Zink, and J. A. Käs, Directed persistent motion maintains sheet integrity during multi-cellular spreading and migration, Soft Matter 8, 6913 (2012).
    [18] C. C. Liang, A. Y. Park, and J. L. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329 (2007).
    [19] M. N. M. Walter, K. T. Wright, H. R. Fuller, S. MacNeil, and W. E. B. Johnson, Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays, Exp. Cell Res. 316 1271 (2010).
    [20] M. Tamada, T. D. Perez, W. J. Nelson, and M. P. Sheetz, Two distinct modes of myosin assembly and dynamics during epithelial wound closure, J. Cell Biol. 176, 27 (2007).
    [21] J. M. Russo, P. Florian, L. Shen, W. V. Graham, M. S. Tretiakova, A. H. Gitter, R. J. Mrsny, and J. R. Turner, Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure, Gastroenterology 128, 987 (2005).
    [22] S. Begnaud, T. Chen, D. Delacour, R. M. Mge, and B. Ladoux, Mechanics of epithelial tissues during gap closure, Curr. Opin. Cell Biol. 42, 52 (2016).
    [23] R. J. Tetley, M. F. Staddon, D. Heller, A. Hoppe, S. Banerjee, and Y. Mao, Tissue fluidity promotes epithelial wound healing. Nat. Phys. 15, 1195 (2019).
    [24] K. J. Sonnemann and W. M. Bement, Wound repair: toward understanding and integration of single-cell and multicellular wound responses, Annu. Rev. Cell Dev. Biol. 27, 237 (2011).
    [25] G. S. Monfared, P. Ertl, and M. Rothbauer, An on-chip wound healing assay fabricated by xurography for evaluation of dermal fibroblast cell migration and wound closure. Sci. Rep. 10, 16192 (2020).
    [26] P. Martin and S. M. Parkhurst, Parallels between tissue repair and embryo morphogenesis, Development 131, 3021 (2004).
    [27] M. T. A. Blanco, J. M. Verboon, R. Liu, J. J. Watts, and S. M. Parkhurst, Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string, J. Cell Sci. 125, 5984 (2012).
    [28] A. Jacinto, S. Woolner, and P. Martin, Dynamic analysis of dorsal closure in Drosophila: From genetics to cell biology, Dev. Cell 3, 9 (2002).
    [29] W. Wood, A. Jacinto, R. Grose, S. Woolner, J. Gale, C. Wilson, and P. Martin, Wound healing recapitulates morphogenesis in Drosophila embryos, Nat. Cell Biol. 4, 907 (2002).
    [30] H. Y. Chen, Y. T. Hsiao, S. C. Liu, T. Hsu, W. Y. Woon, and L. I, Enhancing cancer cell collective motion and speeding up confluent endothelial dynamics through cancer cell invasion and aggregation, Phys. Rev. Lett. 121, 018101 (2018).
    [31] D. T. Tambe et al., Collective cell guidance by cooperative intercellular forces, Nat. Mater. 10, 469 (2011).
    [32] A. Szabó, K. Varga, E. M´ehes, and A. Czirók, Collective cell streams in epithelial monolayers depend on cell adhesion, New J. Phys. 15, 075006 (2013).
    [33] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, Glass-like dynamics of collective cell migration, Proc. Natl. Acad. Sci. U. S. A. 108, 4714 (2011).
    [34] D. Bi, J. Lopez, J. Schwarz, and M. L. Manning, A density-independent rigidity transition in biological tissues, Nature Phys. 11, 1074 (2015).
    [35] J. Park et al., Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).
    [36] S. Garcia, E. Hannezo, J. Elgeti, J. F. Joanny, P. Silberzan, and N. S. Gov, Physics of active jamming during collective cellular motion in a monolayer, Proc. Natl. Acad. Sci. U. S. A. 112, 15314 (2015).
    [37] A. Doostmohammadi, J. I. Mullol, J. M. Yeomans and F. Sagués, Active nematics, Nat. Commun., 9, 3246 (2018).
    [38] K. Kawaguchi, R. Kageyama, and M. Sano, Topological defects control collective dynamics in neural progenitor cell cultures, Nature 545, 327 (2017).
    [39] T. Saw et al., Topological defects in epithelia govern cell death and extrusion. Nature 544, 212 (2017).
    [40] G. Duclos, C. Erlenkämper, J. Joanny, and P. Silberzan, Topological defects in confined populations of spindle-shaped cells. Nature Phys. 13, 58 (2017).
    [41] G. Duclos, S. Garcia, H. G. Yevick, and P. Silberzan, Perfect nematic order in confined monolayers of spindle-shaped cells, Soft Matter 10, 2346 (2014).
    [42] X. Li, R. Balagam, T. F. He, P. P. Lee, O. A. Igoshin, and H. Levine, On the mechanism of long-range orientational order of fibroblasts, Proc. Natl. Acad. Sci. U. S. A 114, 8974 (2017).
    [43] G. Duclos, C. Blanch-Mercader, V. Yashunsky, G. Salbreux, J. F. Joanny, J. Prost, and P. Silberzan, Spontaneous shear flow in confined cellular nematics, Nature physics, 14, 728 (2018).
    [44] P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol. 10, 445 (2009).
    [45] A. Labernadie et al., A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion, Nat. Cell Biol. 19, 224 (2017).
    [46] J. B. Beltman, A. F. M. Maree, J. N. Lynch, M. J. Miller, and R. J. de Boer, Lymph node topology dictates T cell migration behavior, J. Exp. Med. 204 771 (2007).
    [47] G. Karp, Cell and Molecular Biology: Concepts and Experiments 6th ed. (John Wiley & Sons, 2010).
    [48] https://www.youtube.com/watch?v=iKsUiyll2BM
    [49] https://en.wikipedia.org/wiki/Fibroblast
    [50] O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance, J. Cell Sci. 122, 3203 (2009)
    [51] A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett. 98, 158102 (2007).
    [52] H. P. Zhang, A. Beer, E.-L. Florin, and H. L. Swinney, Collective motion and density fluctuations in bacterial colonies, Proc. Natl. Acad. Sci. U. S. A. 107, 13626 (2010).
    [53] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Löwen, and J. M. Yeomans, Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. U. S. A. 109, 14308 (2012).
    [54] C. Chen, S. Liu, X. Q. Shi, H. Chaté, and Y. Wu, Weak synchronization and large-scale collective oscillation in dense bacterial suspensions, Nature 542, 210–214 (2017).
    [55] R. D. Leonardo, Controlled collective motions, Nat. Mater. 15, 1057–1058 (2016).
    [56] C. W. Io, T. Y. Chen, J. W. Yeh, and S. C. Cai, Experimental investigation of mesoscopic heterogeneous motion of laser-activated self-propelling Janus particles in suspension, Phys. Rev. E. 96, 062601 (2017).
    [57] X. S. Picamal, V. Conte, R. Vincent, E. Anon, D. T. Tambe, E. Bazellieres, J. P. Butler, J. J. Fredberg, and X. Trepat, Mechanical waves during tissue expansion, Nat. Phys. 8, 628 (2012).
    [58] S. A. Tawab, S. M. M. Omar, A. A. A. Zeid, and C. Saba, Role of adipose tissue-derived stem cells versus differentiated Schwann-like cells transplantation on the regeneration of crushed sciatic nerve in rats. A
    Histological Study, Int. J. Stem Cells Res. Ther. 1, 1 (2018).
    [59] L. Germain, A. Jean, F. A. Auger, and D. R. Garrel, Human wound healing fibroblasts have greater contractile properties than dermal fibroblasts, J. Surg. Res. 57, 268 (1994).
    [60] B. Aigouy, D. Umetsu, and S. Eaton, Segmentation and quantitative analysis of epithelial tissues, Methods Mol. Biol. 1478, 227 (2016).
    [61] R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. C. Bouten, F. N. van de Vosse, M. Unser and N., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy, Stergiopulos, Biomech. Model. Mechanobiol. 11, 461 (2012).
    [62] Y. X. Zhang, C. Y. Liu, H. Y. Chen, and L. I, Spontaneous multi-scale void formation and closure in densifying epithelial and fibroblast monolayers from the sub-confluent state, The European Physical Journal E 45 (11), 89 (2022).

    QR CODE
    :::