跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李秋男
Chiou-Nan Li
論文名稱: 利用蒸壓法研判本土粒料ASR活性之可行性研究
The Applicability of Autoclaved Test Method to TestASR Activity of Local Aggregates
指導教授: 李釗
Chau Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 鹼質與粒料反應蒸壓法活性粒料
外文關鍵詞: pessimum, alkali-aggregate reaction, autoclave test
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探討混凝土耐久性之影響因素,可發現鹼質與粒料反應的危害,其潛伏期長達十數年,若未於規劃及施工過程,即對此危害採取預防及現場品管措施,一旦工程誤用AAR活性粒料時,除造成後續結構物使用壽限之縮減及增加安全之疑慮外,所需維護或重建之費用頗鉅,並不符經濟效益與國人期望。
    鹼質與粒料反應檢測方法,以目前發展的趨勢而言,檢測方法大約可概分為岩相法、化學法與測長法;測長法又可細分為傳統試驗法、快速砂漿棒試驗法與快速蒸壓法。上述各試驗各有優缺點,因此發展具有快速、準確並量化AAR危害程度之快速蒸壓法。
    本研究使用台灣地區活性粒料,針對AAR行為,進行ASTM 與水泥砂漿棒蒸壓法(MBAT)及混凝土角柱蒸壓法(CPAT)試驗與分析,探討蒸壓法對試體膨脹量特性與Pessimum行為之影響,並與ASTM比較,檢討MBAT與CPAT之判定標準,提出實務上MBAT與CPAT取代傳統試驗法之可行做法。


    The purpose of the study was to conduct ASR tests involving ASTM and quick autoclaving with local active aggregates in Taiwan. In addition to the analysis of impact on the thermal expansion value of autoclaved test method, the expansion characteristics of ASTM and autoclaved test method and the coherence of evaluating pessimum problems were compared in an attempt to investigate the applicability of the newly-developed mortar bar and concrete prism autoclaved test methods. Furthermore, the temporary standard of concrete prism test method was reviewed, hoping to develop a rapid and accurate test method to identify ASR problems and a feasible approach to substitute for traditional ones in practice.

    第一章 研究動機內容及目的 1.1 研究動機………………………………………………………1 1.2 研究內容………………………………………………………2 1.3 研究目的………………………………………………………3 第二章 文獻回顧 2.1 鹼質與粒料反應的種類與機理………………………………4 2.1.1鹼-氧化矽反應(Alkali-Silica Reaction;ASR)…………4 2.1.1.1鹼-氧化矽反應的形式……………………………4 2.1.1.2鹼-氧化矽反應的機理……………………………5 2.1.2鹼-碳酸鹽反應(Alkali-Carbonate Reaction;ACR)………9 2.1.3 鹼-矽酸鹽反應(Alkali-Silicate Reaction)………………10 2.2 鹼質與粒料反應症狀…………………………………………10 2.2.1 外觀症狀…………………………………………………10 2.2.1.1 純混凝土構造物…………………………………11 2.2.1.2 鋼筋混凝土構造物………………………………11 2.2.2 混凝土構造物內部症狀…………………………………12 2.3 鹼質與粒料反應的影響因素…………………………………13 2.3.1 活性粒料…………………………………………………14 2.3.2 孔隙溶液中有足夠的氫氧化鹼…………………………14 2.3.3 足夠的濕度………………………………………………15 2.3.4 其他影響因素……………………………………………15 2.3.4.1 水灰比……………………………………………15 2.3.4.2 輸氣劑……………………………………………16 2.3.4.3 加勁與束制………………………………………16 2.3.4.4 環境因素…………………………………………16 2.4 快速蒸壓法用於評估鹼質與粒料反應之探討………………17 2.4.1 各國快速蒸壓法之研究與規範…………………………17 2.4.1.1 中國大陸蒸壓法之研究與規範…………………17 2.4.1.2 日本蒸壓法之研究與規範……………………….18 2.4.1.3 法國蒸壓法之研究與規範………………………21 2.4.1.4 加拿大蒸壓法之研究與規範……………………21 2.4.2 影響快速蒸壓法因素之探討與比較……………………21 2.4.2.1試體尺寸改變之影響………………………………22 2.4.2.2鹼質與粒料反應機理不同之影響…………………23 2.4.2.3粒料顆粒大小之影響………………………………24 2.4.2.4粒料活性之影響……………………………………24 2.4.2.5水泥成份之影響……………………………………24 2.4.2.6試體含鹼量之影響…………………………………25 2.4.2.7試體添加鹼質種類之影響…………………………26 2.4.2.8試體水灰比之影響…………………………………26 2.4.2.9試體前處理方式之影響……………………………27 2.4.2.10蒸壓處理溫度卅壓力之影響……………………27 2.4.2.11蒸壓處理時間之影響……………………………28 2.4.2.12蒸壓處理對活性及非活性粒料反應之影響……29 2.4.2.13評估指標之影響…………………………………29 第三章 試驗規劃 3.1 試驗計劃………………………………………………………31 3.1.1 粒料取樣………………………………………………31 3.1.2 試驗方法及流程…………………………………………31 3.2 試驗材料………………………………………………………33 3.2.1水…………………………….….…………………………33 3.2.2水泥………………………………………………………33 3.2.3試驗粒料…………………………………………………34 3.2.4藥劑………………………….……………………………34 3.3 試驗器材………………………………………………………34 3.3.1 ASTM C289 化學試驗…………………………………34 3.3.2 ASTM C227 水泥砂漿棒試驗…………………………34 3.3.3 ASTM C1260 水泥砂漿棒快速試驗……………………35 3.3.4 快速蒸壓試驗設備………………………………………35 3.4 試驗步驟………………………………………………………36 3.4.1粒料處理…………………………………………………36 3.4.2 ASTM C289 化學試驗…………………………………37 3.4.3 ASTM C227 水泥砂漿棒試驗…………………………38 3.4.4 ASTM C1260 水泥砂漿棒快速試驗……………………39 3.4.5 ASTM C1293混凝土角柱試驗…………………………40 3.4.6 MBAT水泥砂漿棒蒸壓試驗……………………………41 3.4.7 CPAT混凝土角柱蒸壓試驗………………………………42 第四章 試驗結果分析與討論 4.1 單一試驗結果分析……………………………………………43 4.1.1 ASTM C289粒料之潛在鹼質與二氧化矽反應試驗……44 4.1.2 ASTM C1260快速砂漿棒膨脹試驗……………………46 4.1.3 ASTM C227砂漿棒膨脹試驗……………………………49 4.1.4 ASTM C1293角柱試驗…………………………………52 4.1.5 MBAT砂漿棒快速蒸壓膨脹試驗………………………54 4.1.6 CPAT混凝土角柱快速蒸壓膨脹試驗…………………56 4.2 蒸壓法試體膨脹量之影響因素探討…………………………58 4.2.1試體含鹼量之影響………………………………………58 4.2.2蒸壓環境溶液之影響……………………………………60 4.2.3 試體種類影響……………………………………………62 4.3. 蒸壓法鑑識ASR活性可行性評估…………………………… 64 4.3.1 現有規範鑑識ASR一致性檢討…………………………64 4.3.1.1 兩種試驗之相互比較……………………………64 4.3.1.2 三種試驗彼此比較………………………………67 4.3.2 MBAT成效評估…………………………………………68 4.3.2.1 MBAT與ASTM C289比較………………………68 4.3.2.2 MBAT與ASTM C1260比較………………………69 4.3.2.3 MBAT與ASTM C227比較………………………70 4.3.3 CPAT成效評估…………………………………………71 4.3.3.1 CPAT與ASTM C289比較…………………………71 4.3.3.2 CPAT與ASTM C1260比較………………………73 4.3.3.3 CPAT與ASTM C227比較…………………………74 4.3.4 MBAT與CPAT間成效評估……………………………75 4.4 Pessimum問題分析……………………………………………77 4.4.1東河變質砂岩……………………………………………77 4.4.2三仙台紅色安山岩………………………………………78 4.5 蒸壓法取代傳統試驗法之評估………………………………79 4.5.1 由MBAT及CPAT膨脹量特性評估在實務應用可行性79 4.5.1.1東河變質砂岩………………………………………79 4.5.1.2三仙台紅色安山岩…………………………………80 4.5.2由MBAT及CPAT區別Pessimun效應評估在實務應用可行性……………81 4.6蒸壓法判定標準之檢討…………………………………………83 4.6.1 CPAT………………………………………………………83 4.6.2 MBAT……………………………………………………84 4.7綜合討論…………………………………………………………87 第五章 結論與建議 5.1結論………………………………………………………………91 5.2建議………………………………………………………………92 參考文獻……………………………………………………………93

    參考文獻
    1. Gillott, J.E., “Alkali-aggregate reaction in concrete,” Engineering Geology, Vol.9, pp.303-326, 1975.
    2. Stanton, T.E., “Influence of Cement and Aggregate on Concrete Expansion,” Engineering News-Record, pp.59-61, 124 Feb., 1940.
    3. Stanton, T.E., “Expansion of Concrete Through Reaction Between Cement and Aggregate,” Transactions, American Society of Civil Engineers, Col. 107,pp. 54-126, 1942.
    4. Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
    5. Hadley, D.W., “Alkali reactivity of carbonate rocks-expansion and dedolomitization,” Proceeding Highway Research Board, Vol.40, pp.462-474, 1961.
    6. 王韡蒨,「台灣地區活性粒料之檢測方法研究」,碩士論文,國立中央大學土木工程研究所,中壢,2003年。
    7. 蔣元駒、韓素方,『混凝土工程病害與修補加固』,海洋出版社,北京,中國,pp.365-406,1996年7月。
    8. 許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,博士論文,國立中央大學土木工程研究所,中壢,1999年。
    9. 王淑慧,「台灣地區岩石之鹼-粒料反應潛能研究」,碩士論文,國立中央大學土木工程研究所,中壢 ,1999年。
    10. Van, A., J.H.P. and Visser, S., “Formation of hydrogarnets: calcium hydroxide attack on clays and feldspars,” Cement Concrete and Research, Vol.7, pp.39-44, 1977.
    11. Van, A., J.H.P. and Visser, S., “Reaction of Ca(OH)2 and of Ca(OH)2 + CaSO4.2H2O at various temperatures with feldspars in aggregates in aggregate used for concrete making,” Cement Concrete and Research, Vol.8, pp.677-681, 1978.
    12. Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigation alternatives,” Research Report ICAR 301-1F, 2001.
    13. British Cement Association, “The diagnosis of alkali-silica reaction-report of a working party,” pp.36, 1992.
    14. Lenzner, D., and Ludwig, V., “The alkali aggregate reaction with opaline sand stone from Schleswig-Holstein,” Proceedings of the 4th International Conference on Effects of Alkalis in cement and concrete, Purdue University, pp. 11-34, 1978.
    15. Bérubé, M.A., and Fournier, B., “Alkali-aggregate reaction in concrete,” Gordon & Breach Publisher, 2000.
    16. wamy, R.N.S, “Effects of alkali-aggregate reactivity on material stability and structural integrity,” Proceedings of the CANMET/ACI International Workshop on Alkali-Aggregate Reaction in Concrete, pp.233-241, October 1995.
    17. Bérubé, M.A., Chouinard, D., Boisvert, L., Frenette, J., and Rivest, M., “Influence of wetting –drying and freezing-thawing cycles and effectiveness of sealers on ASR,” Proceedings of the 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp.1056-1063, August 1996.
    18. Tang, M.S., Han, S.F., and Zhen, S.H., “A rapid method for identification of alkali reactivity of aggregate,” Cement and Concrete Research, Vol.13, pp.417-422, 1983.
    19. CECS 48:93, “A rapid test method for determining the alkali reactivity of sands and rocks,” 中國工程建設標準化協會標準(CECS),1995.
    20. JIS A 1804, “Methods of test for production control of concrete – Method of rapid test for identification of alkali reactivity of aggregate,” 2001.
    21. AFNOR P 18-588, “Aggregates-dimensional stability test in alkali medium-accelerated mortar microbar test,” 12/1991.
    22. AFNOR P 18-590, “Aggregates-dimensional stability test in alkali medium-accelerated mortar autoclave test,” 04/1993.
    23. Fournier, B., Bérubé, M.A., and Bergeron, G., “A rapid autoclave mortar bar method to determine the potential alkali-silica reactivity of St. Lawrence Lowlands Carbonate Aggregates (Quebec Canada),” Cement Concrete and Aggregates, CCAGDP, Vol.13, No.1, pp.58-71, 1991.
    24. Tang, M.S, Lan, X.G., and Han, S.F., “Autoclave method for identification of alkali-reactive carbonate rock,” Cement and Concrete Composites, Vol.16, pp.163-167, 1994.
    25. Kanazu, T., Ohnuma, H., Nakano, T., and Ishida, H., “Study on the rapid estimation method of alkali aggregate reaction using concrete specimens,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.375-380, 1989.
    26. Grattan-Bellew, P.E., “Test Methods and Criteria for Evaluation the Potential Reactivity of aggregates,” Proceedings of the 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.279-294, 1989.
    27. Hooton, R.D. and Rogers, C.A., “Evaluation of rapid of test methods for detecting alkali-reactive aggregates,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.439-444, 1989.
    28. Criaud, A., Defossé, C., Chabanis, B., Debray, L., Michel, B., Sorrentino, D., Gallias, M., Salomon, M., Guédon S., and Le Roux, A., “The French standard methods for evaluating the reactivity of aggregates with respect to AAR: Results of an Inter-laboratory Program,” Cement and Concrete Composites, Vol.16, pp.199-206, 1994.
    29. Abe, M., Tomosawa, F., Mano, T. and Togasaki, K., “A study on the simple rapid test method used to judge the alkali reactivity of aggregate,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.369-374, 1989.
    30. Nishbayashi, S., Yamura, K., and Matsushita, H., “A rapid method of determining the alkali-aggregate reaction in concrete by autoclave,” Proceeding of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, pp.299-303, 1987.
    31. Chatterji, C., “An accelerated method for the detection of alkali-aggregate reaction of aggregate,” Cement and Concrete Research, Vol.8, pp.647-650, 1978.
    32. Tamura, H., “A test method on rapid identification of alkali reactive aggregate (GBRC Rapid Method),” Proceeding of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, pp.304-308, 1987.
    33. Nishibayashi, S., Kuroda, T., and Inoue, S., “Expansion characteristics of AAR in concrete by autoclave method,” Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Australia, pp.370-376, 1996.
    34. Tamura, H., Takahashi, T., and Ohashi, M., “A test method on rapid identification of the future susceptibility of alkali-aggregate reaction in fresh concrete (Fresh-con GBRC rapid method),” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.351-356, 1989.
    35. Kishitani, K. and Kobayashi, M., “Development and standardization of a rapid test method for identification of the alkali reactivity of aggregates,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, KYOTO, pp.357-362, 1989.
    36. Kishitani, K., Kobayashi, M., and Tamura, H., “The rapid test JIS A 1804,” Cement and Concrete Composites, Vol.16, pp.169-175, 1994.

    QR CODE
    :::