跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳怡萍
Yi-Pin Chen
論文名稱: 加權排列矩陣及加權位移矩陣之數值域
Numerical Ranges of Weighted Permutation Matrices and Weighted Shift Matrices
指導教授: 高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 94
語文別: 英文
論文頁數: 31
中文關鍵詞: 加權排列矩陣加權位移矩陣
外文關鍵詞: Weighted Permutation Matrix, Weighted Shift Matrix
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們將探討關於「加權排列矩陣」之數值域邊界有直線的等價條件,以及「加權位移矩陣」之數值域半徑與其weights排列順序之間的關係。首先,我們發現ㄧ個3*3的加權排列矩陣A,它的數值域W(A)會2π/3對稱,也就是說W(A)邊界有一條線,其圖形為一個三角形,若且為若,A是ㄧ個正規(normal)矩陣。如果A是ㄧ個4*4的加權排列矩陣,同樣地,它的數值域W(A)會2π/4對稱,若W(A)邊界有一條線,其圖形將為一個四邊形,若且為若,A可被分解為兩個2*2的加權排列矩陣。除此之外,我們發現一個4*4伴隨矩陣其數值域邊界有四條線的等價條件就是此伴隨矩陣可以被分解成兩個2*2的加權排列矩陣。
    另外,我們已知一個n*n加權位移矩陣A的數值域W(A)為一個以原點為圓心的圓盤,我們發現n=4時,其數值域半徑r(A)最大若且為若|a2|為所有weights絕對值中的最大值;n=5時,其數值域半徑r(A)最大之等價條件則是|a2|或是|a3|為所有weights絕對值中的最大值。


    In this thesis, we will study about numerical ranges of
    weighted permutation matrices and weighted shift matrices. Firstly,
    we know that if $A$ is a $3 imes3$ weighted permutation matrix,
    $W(A)$ has symmetry of $frac{2pi}{3}$. Thus, if there is a line
    segment on $partial W(A)$ then $W(A)$ is a triangle. Moreover, $A$
    is normal. If $A$ is a $3 imes3$ weighted permutation matrix,
    $W(A)$ has symmetry of $frac{2pi}{4}$. If there is a line segment
    on $partial W(A)$ then $W(A)$ is a quadrangle. Moreover, $Acong
    A_{1}oplus A_{2}$, where $A_{1}$ and $A_{2}$ are $2 imes 2$
    weighted permutation matrices. Let $A$ be a $4 imes4$ companion
    matrix. We will see that $W(A)$ has four line segments if and only
    if $A$ can be reducible.
    Another subject is that we are interested in finding the order of
    the weights of a weighted shift matrix so that the numerical radius
    will be the largest.

    Abstract (in Chinese) . . . . . . . . . . . . . . . . . . . . . i Abstract (in English) . . . . . . . . . . . . . . . . . . . . . iii Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2. Preliminaries.. . . . . . . . . . . . . . . . . . . . . .3 2.1Basic Properties of Numerical Range.. . . . . . . . . . . . . . . . . . . . . .3 2.2Weighted Permutation Matrices. . . .. . . . . . . . . . . . . . . . . . . . . . . .4 2.3Companion Matrices .. . . . . . . . . . . . . . . . . . . . . . . .5 2.4Weighted Shift Matrices .. . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 3. Weighted Permutation Matrices and Companion Matrices . . . . . . . . . . . . . . . . . . 10 Chapter 4. Weighted Shift Matrices . . . . . . . . . . . . . . . . . . . . . . 26 References .. . . . . . . . . . . . . . . . . . . . . . 31

    [1] E. S. Brown and I. M. Spitkovsky, On °at portions on the boundary of the
    nymerical range, Linear Algebra and its Appl., 390 (2004), 75-109.
    [2] H. L. Gau and P. Y. Wu, Companion matrices: reducibility, numerical ranges
    and similarity to contractions, Linear Algebra and its Appl., 383 (2004), 127-142.
    [3] K. E. Gustafson and D. K. M. Rao, Numerical Range, the Field of Values of
    Linear Operators and Matrices, Springer, New York, 1997.
    [4] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
    [5] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University
    Press, 1991.
    [6] D. S. Keeler, L. Rodman and I. M. Spitkovsky, The Numerical Range of 3 x 3
    Matrices, Linear Algebra and its Appl., 252 (1997), 115-139.
    [7] A. L. Shields, Weighted Shift Operators and Analytic Function Theory, in Topics in Operator Theory(C. Pearcy, Editor), Math. Surveys, vol. 13, Amer. Math. Soc., Providence, R. I., 1974.
    [8] Q. F. Stout, The Numerical Range of a Weighted Shift, Pro. of the Amer. Math. Soc., Vol. 88, No. 3 (1983), 495-502.

    QR CODE
    :::