| 研究生: |
梁旭昇 Hsu-sheng Liang |
|---|---|
| 論文名稱: |
結合臭氧與氧化錳觸媒去除氯苯之研究 Chlorobezene oxidation with ozone over supported manganese oxide catalyst |
| 指導教授: |
張木彬
Moo-been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | PCDD/PCDF 、觸媒 、臭氧 、10%MnOX/SiO2 |
| 外文關鍵詞: | PCDD/PCDF, 10%MnOX/SiO2, catalytic ozonaion |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
戴奧辛(PCDD/PCDF)近年來引起很大的關注,但在研究上由於無法即時分析且具有高毒性,本研究遂以氯苯做為替代污染物,以瞭解觸媒與臭氧結合對其破壞消減之效應。此外含氯揮發性有機物(Chlorinated Volatile Compounds, Cl-VOCs)本身也廣泛使用在工業上,常用於製造業乾洗及脫油的溶劑,根據學者研究,每年約有一百五十萬噸含氯有機物排放至大氣中,因此尋求破壞含氯有機物的技術也將是必要的。本研究以含浸法製備10 wt % MnOx/SiO2觸媒,經氮氣吸附儀測定比表面積為286 m2/g,XRD鑑定為無晶相結構,實驗以固定床反應器進行臭氧催化氧化氯苯反應,分別改變溫度、臭氧含量及空間流速並探討其效應。在未添加臭氧情況,120℃時氯苯轉化率僅2.7%,加入900 ppm臭氧使氯苯轉化率大幅提升至90.4%,但將空間流速由300,000降至60,000 h-1,氯苯轉化率僅由90.4提升至92.7%,顯示增加氯苯停留時間對其轉化率增加並不明顯。在觸媒穩定性實驗方面,經過96小時測試,氯苯轉化率由90.8%降至79.6%,氣相含碳產物僅有CO及CO2,CO2與CO產物選擇性分別為58.5與41.5%,碳平衡介於76.2與74.1%之間。
PCDD (Polychlorinated dibenzodioxin) and PCDF (Polychlorinated dibenzofuran) are commonly known as dioxins which have received great concerns due to their persistency and toxicity. In this study, chlorobenzene (CB) was employed as dioxin model molecule to evaluate the destruction behavior due to the high toxicity of dioxin. In this study, 10 wt % MnOx/SiO2 was prepared by impregnation method. The surface area of MnOx/SiO2 measured by the BET method was 286 m2/g. No distinct peaks were observed in the XRD pattern, indicating that manganese oxide was of an amorphous structure. Catalytic oxidation of gaseous chlorobenzene with ozone over 10% MnOx/SiO2 was experimentally carried out with a packed bed reactor to investigate the feasibility of the low-temperature decomposition process. The effects of reaction parameters (i.e reaction temperature, ozone concentration and space velocity (SV)) on the chlorobenzene oxidation were discussed. The conversion of chlorobenzene achieved with MnOx/SiO2 in the absence of ozone was only 2.7% at 120℃. On the other hand, the conversion increased to 90.4% over MnOx/SiO2 with 900 ppm ozone at 120℃. CB conversion slightly increases from 90.4% to 92.7% with the decrease of space velocity from 300,000 to 60,000 h-1 due to the fact that longer reaction time results in higher CB conversion. The results of the long-term operation indicate that the conversion of chlorbenzene shows a little drop from 90.8% to 79.6% after 96 h operation. At the steady state, CO and CO2 were the only carbon-containing products detected in gas streams at the outlet of the reactor. The selectivities of CO2 and CO were 58.5 and 41.5%, respectively. The average carbon and chlorine balance were 76.2 and 74.1%, respectively.
Almquist, C., Sahle-demessie, E., Sehker, S. C., and Sowash, J., Methanol oxidation using ozone on titania-supported vanadia catalyst, Environ. Sci. Technol., 2007, 41, 4754-4760.
Dhandapani, D. and Oyama, S. T., Gas phase ozone decomposition catalysts, Appl. Catal. B: Environ., 1997, 11, 129-166.
Einaga, H. and Futamura, S., Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides, J. Catal., 2004, 227, 304-312.
Einaga, H. and Futamura, S., Oxidation behavior of cyclohexane on alumina-supported managese oxides with ozone, Appl. Catal. B: Environ., 2005, 60, 49-55.
Einaga, H., Harada, M., and Futamura, S., Structural changes in alumina-supported manganese oxides during ozone decomposition, Chem. Phys. Lett., 2005, 408, 377-380.
Hao, A., Cheng, D., Guo, Y., and Liang, Y., Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature, Appl. Catal. B: Environ., 2001, 33, 217-222.
Hsisig, C., Zhang, W., and Oyama, S. T., Decomposition of ozone using carbon-supported metal oxide catalysts. Appl. Catal. B: Environ., 1997, 14, 117-129.
Imamura, S. and Ikebata, M., Decomposition of ozone on a silver catalyst, Ind. Eng. Chem. Res., 1991, 30, 217-221.
Kastner, J., Buquoi, Q., Ganagavaram, R., and Das, K. C., Catalytic ozonation of gaseous reduced sulfur compounds using wood fly ash, Environ. Sci. Technol., 2005, 39, 1835-1842.
Konova, P., Stoyanova, M., Naydenov, A., Christoskova, St., and Mehandjiev, D., Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide, Appl. Catal. A: Gen., 2006, 298, 109-114.
Li, W., Gibbs, G. V., and Oyama, S. T., Mechanism of ozone decomposition on a manganese oxide catalyst. In situ Raman spectroscopy and ab initio molecular orbital calculations. J. Am. Chem. Soc., 1998, 120, 9041-9046.
Mehandjiev, D., Naydenov, A., and Ivanov, G., Ozone decomposition, benzene and CO oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts, Appl. Catal. A: Gen., 2001, 206, 13-18.
Naydenov, A., and Mehandjiev, D., Complete oxidation of benzene on manganese dioxide by ozone, Appl. Catal. A: Gen., 1993, 97, 17-22.
Naydenov, A., Stoyanova, R., and Mehandjiev, D., Ozone decomposition and CO oxidation on CeO2. J. Mol. Catal. A: Chem., 1995, 98, 9-14.
Oyama, S. T., Chemical and catalytic properties of ozone, Catal. Rev. Sci. Eng., 2000, 42, 279-322.
Petersson, M., Jonsson, D., Persson, H., Cruise, N., and Andersson, B., Ozone promoted carbon monoxide oxidation on platinum/γ-alumina catalyst, J. Catal., 2006, 238, 321-329.
Radhakrishnan, R., Oyama, S. T., and Chen, J. G., Electron transfer effects in ozone decomposition on supported manganese oxide, J. Phys. Chem. B, 2001, 105, 4245-4253
Rakitskaya, T., Bandurko, A. Y., Ennan, A. A., and Paina, V. Y., Catalysts for sanitary air cleaning from ozone, Catalysis Today, 1999, 53, 703-713.
Reed, C., Lee, Y. K., and Oyama, S. T., Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone, J. Phys. Chem. B, 2006, 110, 4207-4216.
Stephens, S., Rossi, M. J., Golden, D. M., The heterogeneous reaction of ozone on carbonaceous surfaces, Int. J. Chem. Kinet., 1986, 18, 1133-1149.
Subrahmanyam, C., Bulushev, D. A., and Kiwi-Minsker, L., Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature, Appl. Catal. B: Environ., 2005, 61, 98-106.
Suzuki, S., Hori, Y., and Koga, O., Decomposition of ozone on natural sand. Bull. Chem. Soc. Jpn. 1979, 52, 3103-3104.
Xi, Y., Reed, C., Lee, Y. K., and Oyama, S. T., Acetone oxidation using ozone on manganese oxide catalysts, J. Phys. Chem. B, 2005, 109, 17587-17596.
中華民國行政院勞工安全委員會,1992,勞工作業環境測定實施辦法,勞安三02699號令發布。
中華民國行政院勞工安全委員會,2000,物質安全資料表,氯苯。
中華民國行政院環境保護署,1999,毒性化學物質運作規定,環署毒字0083778號。
中華民國行政院環境保護署,2001,土壤及地下水污染整治法,第五條第二項,環保署水字第0073684號。
中華民國行政院環境保護署毒管處,2000,列管毒化物毒理資料庫,氯苯。
司洪濤,「戴奧辛控制新技術與醫療廢棄物焚化爐測試案例介紹」,化工技術,Vol.13,158-165,2005。
吳榮宗著,「工業觸媒概論」,國興出版社,1989。
呂立德,「化工動力與化工熱力」,立功出版社, 1991。
梁煜申,「 鈀觸媒處理焚化廢氣中CO、NO之動力研究」,國立中興大學環工所碩士論文,2003。
陳冠豪,「以溶膠凝膠法製備MnOX/Al2O3觸媒焚化處理三氯乙烯之研究」,碩士論文,國立成功大學環境工程研究所,台南,2001。
楊家正,「釩鈦觸媒催化分解氣相戴奧辛之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2004。
廖偉筑,「結合觸媒氧化及高級氧化以處理含氯揮發性有機污染物之研究」,碩士論文,國立台灣大學環境工程研究所,台北,2005。