| 研究生: |
丁歆庭 Shin-Ting Ding |
|---|---|
| 論文名稱: |
岩石熱導率及其物理性質之經驗關係式研究:以台灣晚期中生代至新生代沉積岩為例 Empirical relationships between thermal conductivity and petrophysical properties: Examples from late Mesozoic to Cenozoic sedimentary rocks in Taiwan |
| 指導教授: |
林殿順
Andrew T. Lin 張午龍 Wu-Lung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 岩石熱導率 、井測 、岩石物理性質 、沉積岩 |
| 外文關鍵詞: | thermal conductivity, petrophysical properties, well logging, sedimentary rocks |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
岩石熱導率對於油氣探勘以及地下熱流評估皆為重要的參數之一。由於傳統量測岩石熱導率方法不易進行,一旦缺乏岩心資料則岩石熱導率就無從得知。因此,利用井測資料所得的岩石物理參數來估算熱導率就成為較易實施且有效率的方法。為建立井測資料與岩石熱導率間的經驗關係式,本研究取用位於台灣西南外海之台南盆地以及雲林湖山水庫沉積岩,年代從中生代到新生代地層。本研究方法分成三步驟,首先在實驗室量測岩石樣本的基質密度、孔隙率、P波慢速與熱導率等物理性質,結果顯示熱導率與其它三種皆為負相關。第二步利用這些量測值與多重線性迴歸方法 (Multiple Linear Regression), 建立熱導率與三種物理性質的經驗數學式。最後則是利用台南盆地六口研究井的井測結果所得之岩石參數,代入經驗式後計算地下連續性之岩石熱導率變化。此經驗式可以應用於估算有鑽井資料的沉積岩(砂岩、砂泥互層、泥岩)熱導率, 估算結果之準確性落在20%信賴區間。
Rock thermal conductivities are one of the essential parameters for determining crustal heat flows. If drill cores are not retrieved from boreholes, no direct laboratory measurements of thermal conductivity can be made for subsurface rocks and sediments. In this case, petrophysical properties obtained from well logging can be used to determine thermal conductivities. In this study, I firstly establish empirical relations between thermal conductivities and three petrophysical properties: matrix density, porosity, and sonic slowness, from well-log measurements at the same depth of dry rock samples. We then apply these empirical equations to borehole well-log data to obtain a continuous thermal conductivity profile for some desired rock formations. Rock samples from 6 boreholes of Cretaceous to Miocene sandstones and shales in the Tainan Basin, offshore SW Taiwan, and Pleistocene sandstones at the Hushan Reservoir, Yunlin County, are measured for determining thermal conductivity (λ), matrix density (ρma), porosity (φt) and sonic slowness (Sp). A regression analysis of the measurements yields a best fit (e.g., rms of 0.08W(mK)-1) of a linear trend line, and this trend is then applied to well-log data with continuous measurements of matrix density, porosity and sonic slowness to obtain a continuous thermal conductivity profile for rocks drilled in a particular borehole. The proposed empirical linear relations between thermal conductivity and matrix density, porosity, and sonic slowness can be readily used to obtain thermal conductivities from well-log data.
Asquith, G. B., Krygowski, D., & Gibson, C. R. (2004). Basic well log analysis (Vol. 16). Tulsa: American association of petroleum geologists.
Beardsmore, G. R., Cull, J. P. (2001) Crustal Heat Flow: A Guide Measurement and Modelling. Cambridge university Press ISBN:9780521797030.
Beziat, A., Dardaine, M., & Mouche, E. (1992). Measurements of the thermal conductivity of clay-sand and clay-graphite mixtures used as engineered barriers for high-level radioactive waste disposal. Applied clay science, 6(4), 245-263.
Blackwell, D. D., & Steele, J. L. (1989). Thermal conductivity of sedimentary rocks: measurement and significance. In Thermal history of sedimentary basins (pp. 13-36). Springer New York.
Bohac, V., Gustavsson, M. K., Kubicar, L., & Gustafsson, S. E. (2000). Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer. Review of Scientific Instruments, 71(6), 2452-2455.
Brigaud, F., & Vasseur, G. (1989). Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophysical Journal International, 98(3), 525-542.
Brigaud, F., Chapman, D. S., & Le Douaran, S. (1990). Estimating Thermal Conductivity in Sedimentary Basins Using Lithologic Data and Geophysical Well Logs (1). AAPG Bulletin, 74(9), 1459-1477.
Chapman, D. S., Keho, T. H., Bauer, M. S., & Picard, M. D. (1984). Heat flow in the Uinta Basin determined from bottom hole temperature (BHT) data. Geophysics, 49(4), 453-466.
Crain, E. R. (2013). Welcome to Crain’s Petrophysical Handbook. Online Shareware Petrophysics Training and Reference Manual, url http://www. spec2000. net, Accessed.
Demongodin, L., Pinoteau, B., Vasseur, G., & Gable, R. (1991). Thermal conductivity and well logs: a case study in the Paris basin. Geophysical Journal International, 105(3), 675-691.
Evans, T. R. (1977) Thermal properties of North Sea rocks, Log Analyst, 18(2), 3-12.
Ferguson, T. R., & Bazant, M. Z. (2012). Nonequilibrium thermodynamics of porous electrodes. Journal of The Electrochemical Society, 159(12), A1967-A1985.
Fertl, W. H., & Frost Jr, E. (1980). Evaluation of shaly clastic reservoir rocks. Journal of Petroleum Technology, 32(09), 1-641.
Freund, D. (1992). Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure. Geophysical Journal International, 108(1), 125-135.
Fuchs, S., & Förster, A. (2014). Well-log based prediction of thermal conductivity of sedimentary successions: a case study from the North German Basin. Geophysical Journal International, 196(1), 291-311.
Funnell, R., Chapman, D., Allis, R., & Armstrong, P. (1996). Thermal state of the Taranaki basin, New Zealand. Journal of Geophysical Research: Solid Earth (1978–2012), 101(B11), 25197-25215.
Goss, R. D., Combs, J. (1976) Thermal conductivity measurement and prediction from geophysical well log parameters with borehole application. Final Report, Institute for Geosciences, University of Texas at Dallas, NSF/RA-760364, 31 pp.
Goss, R. D., Combs, J., Timur, A. (1975) Prediction of thermal conductivity in rocks from other physical parameters and from standard geophysical well logs. In Proceedings of the SPWLA 16th Annual Logging Symposium, 1975, 21 pp.
Goutorbe, B., Lucazeau, F., & Bonneville, A. (2006). Using neural networks to predict thermal conductivity from geophysical well logs. Geophysical Journal International, 166(1), 115-125.
Gröber, H., Erk, S., & Grigull, I. U. (1955). Wärmeleitung in festen Körpern (pp. 3-138). Springer Berlin Heidelberg.
Gustafsson, S. E. (1991). Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of scientific instruments, 62(3), 797-804.
Gustavsson, M., Karawacki, E., & Gustafsson, S. E. (1994). Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Review of Scientific Instruments, 65(12), 3856-3859.
Halliburton Energy Services, 1994, Log Interpretation Charts (third printing): Houston, Texas, Halliburton Company.
Haq, B. U., Hardenbol, J., Vail, P. R. (1987) Chronology of fluctuating sea levels since Triassic. Science, 235, 1156-1167
Hartmann, A., Rath, V., Clauser, C. (2005) Thermal conductivity from core amd well log data. Int. J. Rock Mech. Min. Sci., 42(7-8), 1042-1055.
Horai, K. I. (1971). Thermal conductivity of rock‐forming minerals. Journal of Geophysical Research, 76(5), 1278-1308.
Horner, D. R. (1951, January). Pressure build-up in wells. In 3rd World Petroleum Congress. World Petroleum Congress.
Lee, T. Y., Tang, C. H., Ting, J. S. and Hsu, Y. Y. (1993) Sequence
stratigraphy of the Tainan Basin, offshore southwestern Taiwan.
Petrol. Geol. Taiwan, 28, 119-158.
Lee, Y., & Deming, D. (1998). Evaluation of thermal conductivity temperature corrections applied in terrestrial heat flow studies. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B2), 2447-2454.
Lemmon, E. W., McLinden, M. O., & Friend, D. G. (2005). Thermophysical properties of fluid systems. NIST chemistry webbook, NIST standard reference database, 69.
Liao, W.-Z., Lin, A.-T., Liu, C.-S., Oung, J.-N., Wang, Y. (2014) Heat flow in the rifted continental margin of the South Chain Sea near Taiwan and its tectonic implications. Journal of Asian Earth Sciences, 92, p233-244.
Lin, A.-T. & Watt, A. B. (2002) Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. J. Geophys. Res., Vol. 107, No. B9, 2185, doi: 10.1029/2001JB000669.
Lin, A.-T., Watt, A. B., Hesselbo, S. P. (2003) Cenozoic stratigraphy and subsidence history of the South Chain Sea margin in the Taiwan region. Basin Res., 15, 453-478, doi: 10.1046/j.1365-2117.
Log, T., & Gustafsson, S. E. (1995). Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire and materials, 19(1), 43-49.
Middleton, M. F. (1994). Determination of matrix thermal conductivity from dry drill cuttings. AAPG bulletin, 78(11), 1790-1799.
Pribnow, D., Williams, C. F., & Burkhardt, H. (1993). Well log‐derived estimates of thermal conductivity in crystalline rocks penetrated by the 4‐KM deep KTB Vorbohrung. Geophysical research letters, 20(12), 1155-1158.
Sass, J. H., Lachenbruch, A. H., Moses, T. H., & Morgan, P. (1992). Heat flow from a scientific research well at Cajon Pass, California. Journal of Geophysical Research: Solid Earth (1978–2012), 97(B4), 5017-5030.
Schön, J. (1983). Petrophysik: Physikalische Eigenschaften von Gesteinen und Mineralen. F. Enke.
Schön, J. H. (1998). Physical properties of rocks: fundamentals and principles of petrophysics (Vol. 18). Pergamon Pr.
Sekiguchi, K. (1984). A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics, 103(1), 67-79.
Serra, O. (1984). Fundamentals of well-log interpretation (Vol. 1). Amsterdam: Elsevier.
Somerton, W. H. (1992). Thermal properties and temperature-related behavior of rock/fluid systems (Vol. 37). Elsevier.
Sundberg, J. (2002). Determination of thermal properties at Äspö HRL. Comparison and evaluation of methods and methodologies for borehole KA 2599 G01. Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden).
Tanaka, K., Lee, W. S., Lu, D. H., Fujimori, A., Fujii, T., Terasaki, I., ... & Shen, Z. X. (2006). Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science, 314(5807), 1910-1913.
Tikhomirov, V. M. (1968) The thermal conductivity of rocks and its relationship to density, moisture content and temperature (in Russian), Neftânoe Hozâjstvo, 46(4), 36-40.
Vacquier, V., Mathieu, Y., Legendre, E., Blondin, E. (1988) Experiment on estimating thermal conductivity of sedimentary rocks from oil well logging, Int. J. Rock Mech. Min. Sci., 26(2), 63-63.
Vosteen, H. D., & Schellschmidt, R. (2003). Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Physics and Chemistry of the Earth, Parts A/B/C, 28(9), 499-509.
Waples, D. W. (1980). Time and temperature in petroleum formation: application of Lopatin's method to petroleum exploration. AAPG bulletin, 64(6), 916-926.
Western Atlas International, Inc. (1995) Log interpretation charts, Houston, Texas, Western Atlas, 300 p.
Wu, M.-S., Liang, S.-C., Chang, K.-H., Hu, C.-C., Wang, C.-Y., Lin, T.-S. (2009) Discussion of highstand systems tract of lower Miocene, northern depression of Tainan Basin. Journal of Petroleum, Vol.45, NO. 1, p1-6.
Wu, S.-H., Lin, C.-Y., Lin, L.-H., Oung, J.-N. (1993) Hydrocarbon correlation in the central uplifted zone, Tainan Basin. AAPG., No. 16, p308-329.
Yang, K. M., Ting, H. H. and Yuan, J. (1991) Structural styles and
tectonic modes of Neogene extensional tectonics in southwestern Taiwan: implication for hydrocarbon exploration. Petrol. Geol. Taiwan, 26, 1-31.
林朝棨 (1935) 台中豐原地區第三紀及第四紀地層之研究。
蕭承龍等4人,台灣西部盆地地層與沉積,中國石油股份有限公司探採油就彙報,第13期,p73-89,1990。