跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsung-Han Tsai
論文名稱: 添加微量液體對振動床中顆粒體分離現象的影響
The influence of adding liquids in binary mixture of granular materials on segregation mechanism
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 104
中文關鍵詞: 分離振動床顆粒床液橋力黏滯度液體含量
外文關鍵詞: granular bed, liquid bridge force, viscosity, liquid content, vibrated bed, segregation
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以實驗方法,針對顆粒體間添加微量液體後運動情形的影響,以各佔一半體積之大小顆粒加入振動床系統做為實驗設備,添加的液體包括5種黏滯度不同的矽油,借由影像處理技術對大顆粒體整體的平均高度對時間的變化作一系列的討論,其中包括穩態時間、穩態平均高度以及上升速度。
    本文主要探討的控制參數為添加矽油的黏滯度和添加矽油的無因次液體含量,其中矽油的黏滯度影響液橋力的大小,而矽油的無因次液體含量與液橋的形成與否和數量的多寡有關。在本實驗中振動床內的大小顆粒體就有尺寸和密度不同所造成的分離現象,而液橋力則會阻礙顆粒體的運動,在這些力的作用下產生不同的分離結果。
    本實驗中大顆粒體穩態平均高度及平均上升速度,會呈現黏滯度越高則越低,無因次液體含量越高也是一樣結果,至於達到穩態時間和分離率則相反,隨著黏滯度和無因次液體含量增加而減小。


    The influence of adding liquids in binary mixture of granular materials on segregation mechanism was studied in this paper. The experiment facility of a vertical vibrated bed was used in this study. The granular materials consist of a binary mixture with the same volume fraction of small/heavy and large/light particles. The liquids added in the granular materials are silicon oils with five different viscosities. The ensemble average height of large particles changes with time.
    This controlled parameters include viscosity and dimensionless liquid content of the adding silicon oils. The liquid bridge force was greater with the increasing viscosity of the silicon oil. The increasing dimensionless liquid content of the liquid results in and stronger liquid bridges causing the higher liquid bridge force in the system. In this study, the particles in the vibrated bed display the segregation phenomenon due to the different size and density of particles. The particle motions are weaker in the system with adding more viscous or higher amount of liquid due to the stronger liquid bridge force. It results in the reduction of the segregation.
    The results show that the dimensionless average height of large particles and average rising velocity decrease with the increase of the viscosity and dimensionless liquid content of adding silicone oil. However segregation and the time for reaching steady state in the system decreases with the increase of the viscosity and dimensionless liquid content of adding silicone oil.

    摘 要 I 目 錄 IV 附 表 目 錄 VI 附 圖 目 錄 VII 符 號 說 明 X 第一章 簡介 1 1.1 顆粒流介紹 1 1.1.1 顆粒體簡介 1 1.1.2 顆粒流與一般流體的差異性 2 1.1.3 顆粒流的研究發展 5 1.1.4 顆粒體在振動床內的介紹 7 1.2 偏析現象 10 1.2.1偏析現象的探討 10 1.2.2振動床內的偏析現象 12 1.3 液體對顆粒體運動的影響 13 1.3.1 顆粒體間的液橋現象 15 1.3.2 液橋力 16 1.3.3 表面張力 16 1.3.4 黏滯力 18 1.4 研究動機與方向 19 第二章 實驗方法 21 2.1 實驗設備 21 2.2 實驗原理與方法 26 2.2.1 實驗參數 26 2.2.2 實驗計算原理 31 2.3 實驗步驟 33 2.4 誤差分析 35 第三章 結果與討論 37 3.1液體含量對顆粒體分離性質的影響 37 3.2液體黏滯度對顆粒體分離性質的影響 47 3.3分離係數的探討 49 第四章 結 論 51 參 考 文 獻 52

    [1] Neederman, R. M., 1992, “Statics and Kinematics of Granular Materials,” Cambridge University Press.
    [2] 賈魯強,黎璧賢,2001年,“漫談顆粒體物理”,物理雙月刊,23卷,4期,pp. 503-510.
    [3] Herrmann, H. J., 1995, “Physics of Granular Media,” Chaos Soliton Fract, Vol. 6, pp. 203-212.
    [4] Campbell, C. S. and Brennen, C. E., 1985, “Chute Flows of Granular Material: Some Computer Simulations,” J. Appl. Mech., Vol. 52, pp. 72-78.
    [5] Reynolds, O., 1885, “On the Dilatancy of Media Composed of Rigid Particles in Contact, With Experimental Illustrations,” Phil. Mag., Vol. 20, pp. 469-481.
    [6] Reynolds, O., 1886, “Experiments Showing Dilatancy, A Property of Granular Materials Possibly Connected with Gravitation,” Proc. Roy. Inst. of Gr. Britain., Vol. 11, pp. 354-363.
    [7] Faraday, M., 1831, “On a Peculiar Class of Acoustical Figures and on Certain Forms Assumed by Groups of Particles upon Vibrating Elastic Surfaces,” Phil. Trans. R. Soc., London, Vol. 52, pp. 299-340.
    [8] Hvorslev, M. J., 1939, “Torsion Shear Tests and Their Place in the Determination for Shearing Resistance of Soils,” Proc. ASTM, Vol. 39, pp. 999-1022.
    [9] Ahn, H., Brennen, C. E. and Sabersky, R. H., 1991, “Measurements of Velocity Fluctuation, Density, and Stressesin Chute Flows of Granular Materials,” J. Appl. Mech., Vol. 58, pp. 792-803.
    [10] Hsiau, S. S. and Hunt, M. L., 1993, “Shear-Induced Particle Diffusion and Logitndinal Velocity Fluctuations in a Granular-Flow Mixing Layer,” J. Fluid Mech., Vol. 251, pp. 299-313.
    [11] Natarajan, V. V. R., Hunt, M. L. and Taylor, E. D., 1995, “Local
    Measurements of Velocity Fluctuations and Diffusion Coefficients for A Granular Material Flow,” J. Fluid Mech., Vol. 304, pp. 1-25.
    [12] Wang, D. G. and Campbell, C. S., 1992, “Reynolds Analogy for a Shearing Granular Msterials,” J. Fluid Mech., Vol. 244, pp. 527-546.
    [13] Savage, S. B., 1992, “Disorder, Diffusion and Structure Formation in Granular Flows,” in Disorder and Granular Media, D. Bideau, ed., Elsevier Science Publishers, Amsterdam, pp. 225-285.
    [14] Hsiau, S.S. and Hunt, M.L., 1993, "Kinetic Theory Analysis of Flow-Induced Particle Diffusion and Thermal Conduction in Granular Material Flows," J. Heat Transfer, Vol. 115, No. 3, pp. 541-548.
    [15] Johnson, P. C., Nott, P. and Jackson, R., 1990, “Frictional-Collisional Equations of Motion for Particulate Flows and their Application to Chutes,” J. Fluid Mech., Vol. 210, pp. 501-535.
    [16] Campbell, C. S. and Brennen, C. E., 1985, “Computer Simulation of Granular Shear Flows,” J. Fluid Mech., Vol. 151, pp. 167-188.
    [17] Knight, J. B., Ehrichs, E. E., Kuperman, V. Y., Flint, Jaeger, H. M., and Nagel, S. R., 1996, “ An experimental study of granular convection,” Phys. Rev. E., Vol. 54, pp. 5726-5738.
    [18] Knight, J. B., 1997,“External boundaries and internal shear bands in granular convection,” Phys. Rev. E., Vol. 55, No. 5, pp. 6016-6023.
    [19] Hsiau and Tai,2001,「振動床內顆粒體運動機制之研究」
    [20] Bachman, D., 1940, Verfahrenstechnik Z .D.I . Beiheft, No. 2, pg. 43.(cited by Thomas et al., 1989.)
    [21] Thomas, B. Mason, M. O., Liu, Y. A. and Squires, A. M., 1989 “Identifying states in shallow vibrated beds,” Powder Technol., Vol.57, pp. 267-280.
    [22] Aoki,K. M., Akiyama, T., Maki, T. and Watanabe, T., 1996, “Effect of size Polydispersity on Granular-Material,” Phys. Rev. E. Vol.54, pp. 1990-1996.
    [23] Hsiau, S. S. and Pan, S. J., 1998,“Motion state transitions in a vibrated granular bed,” Powder Technol., Vol. 96, pp. 219-226.
    [24] Hsiau, S. S., Wu, M. H. and Chen, C. H., 1998,“Arching phenomena in a vibrated granular bed,” Powder Technol., Vol. 99, pp. 185-193
    [25] Cooke, W., Warr, S., Huntley, J. M. and Ball, R. C., 1996“Particle size segregation in a two-dimensional bed undergoing vertical vibration,” Phys. Rev. E., Vol. 53, pp. 2812-2822.
    [26] Dury, C. M. and Ristow, G. H., 1999, “Competition of mixing and segregation in rotating cylinders,” Phys. Fluid, Vol. 11, pp. 1387-1394.
    [27] Chakraborty, S., Nott, P. R., and Prakash, J. R., 2000, “Analysis of radial segregation of granular mixtures in a rotating drum,” Eur. Phys. J. E, Vol.1, pp. 265-273.
    [28] Hsiau, S. S. and Lin, Y. Y., 2000, "Segregation and Convection of Binary Disks in a Vertical Shaker," Advanced Powder Technology, Vol. 11, No. 4, pp. 439-457.
    [29] Ristow, G. H., 1994, “Particle mass segregation in a two-dimensional rotating drum,” Europhys Lett., Vol. 28, pp. 97-101.
    [30] Jain, N., Ottino, J. M., and Lueptow, R. M., 2005, “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granul. Matter, Vol. 7, pp. 69-81.
    [31] Elperin, T. and Golshtein, E., 1997, “Effects of Convection and Friction on Size Segregation in Vibrated Granular Beds,” Physica A, Vol. 247, pp. 67-78.
    [32] Vanel, Loic, Rosato, A. D., and Dave, R. D., 1997, “Rise-time regimes of a large sphere in vibrated bulk solids,” Phy. Rev. Lett., Vol. 78, pp.1255-1258.
    [33] Samadani, A. and Kudrolli, A., 2001, “Angle of repose and segregation in cohesive granular matter,” Phys. Rev. E., Vol. 64, pp. 051301: 1-9.
    [34] Jullien, R., Meakin, P. and Parlovitch, A., 1992, “Three-dimensional model for particle-size segregation by shaking,” Phys. Rev. Lett., Vol. 69, pp. 640-643.
    [35] Duran, J., Rajchenbach, J. and Clement, E., 1993, “Arching effect model for particle size segregation,” Phys. Rev. Lett., Vol. 70, pp. 2431-2434.
    [36] Muniandy, K., Liffman, K., Rhodes, M., Gutteridge, D. and Metcalfe, G. ,2001, “A general segregation mechanism in a vertically shaken bed.” Granular Matter., Vol. 3(4), pp. 205-214
    [37] Albert, R., Albert, I., Hombaker, D., Schiffer, P., and Barabasi, A. L., 1997 ,“Maximum angle of stability in wet and dry spherical granular media,” Phys. Rev. E, Vol. 56, pp. 6271-6274.
    [38] Rennie, P. R., Chen, X. D., Hargreaves, C., and Mackereth, A. R., 1999, “A study of the cohesion of dairy powders,” J. Food. Eng., Vol. 39, pp. 277-284.
    [39] Li, H. M. and McCarthy, J. J., 2003, “Controlling cohesive particle mixing and segregation,” Phys. Rev. Lett., Vol. 90, pp. 18430: 1-4.
    [40] Li, H. M. and McCarthy J. J., 2005, “Phase diagrams for cohesive particle mixing and segregation,” Phys. Rev. E, Vol.71, pp. 021305: 1-8.
    [41] Yang, S. C. and Hsiau, S. S., 2001, “The simulation of powders with liquid bridges in a 2D vibration bed,” Chem. Eng. Sci., Vol. 56, pp. 6837-6849.
    [42] Hsiau, S. S. and Yang, S. C., 2003, “Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect on liquid bridges,” Chem. Eng. Sci., Vol. 58, pp. 339-351.
    [43] Nase, S. T., Vargas, W. L., Abatan, A. A., and McCarthy, J. J., 2001, “Discrete characterization tools for cohesive granular material,” Powder Technol., Vol. 116, pp. 214-223.
    [44] Jain, K., Shi, D. L., and McCarthy, J. J., ,2002, “Discrete characterization of cohesion in gas-solid flows,” Powder Technol., Vol. 146, pp. 160-167.
    [45] Kohonen, M. M., Geromichalos, D., Scheel, M., Schierb, C., and Herminghausb, S., 2004, “On capillary bridges in wet granular materials,” Physica A, Vol. 339, pp. 7-15.
    [46] Ennis, B. J., Tardos, G. I., and Pfeffer, R., “The influence of viscosity onthe strength of an axially strained pendular liquid bridge, 1999,” Chem. Eng. Sci., Vol. 45, pp. 3071-3088.
    [47] Adams, M. J., Thornton, C., and Lian, G., 1994, “First International Particle Technology Forum,” Agglomerate Coalescence, Vol. 1, August 17-19,Denver, USA, pp. 220-224.
    [48] Mason, T. G., Levine, A. J., Ertas, D., and Halsey, T. C., 1999, “Critical angle of wet sandpiles,” Phys. Rev. E, Vol. 60, pp. R5044-R5047.
    [49] Fisher, R. A., “On the capillary forces in an ideal soil, 1926,” J. Agric. Sci., Vol.16, pp. 492-505.
    [50] Lian, G., Thornton, C., and Adams, M. J., 1993, “A theoretical study of the liquid bridge forces between two rigid spherical bodies,” J. Colloid Interf. Sci.,Vol. 161, pp. 138-147.
    [51] Adams, M. J. and Perchard, V., 1985, “The cohesive forces between particles with interstitial liquid,” Inst. Chem. Engng Symp., Vol. 91, pp. 147-160.
    [52] Goldman, A.J., Cox, R. G., and Brenner, H.,1967, “Slow viscous motion of a sphere parallel to a plan wall I. Motion through a quiescent fluid,” Chem. Eng. Sci., Vol. 22, pp. 637-651.
    [53] Yang, S. C., 2006, “Segregation of cohesive powders in a vibrated granular bed,” Chem. Eng. Sci., Vol. 61, pp. 6180-6188

    QR CODE
    :::